Hasher 🔐
A modern, high-performance hash search and generation tool powered by Elasticsearch and Next.js. Search for hash values to find their plaintext origins or generate hashes from any text input.
✨ Features
- 🔍 Hash Lookup: Search for MD5, SHA1, SHA256, SHA512, and Bcrypt hashes
- 🔑 Hash Generation: Generate multiple hash types from plaintext
- 💾 Auto-Indexing: Automatically stores searched plaintext and hashes
- 📊 Elasticsearch Backend: Scalable storage with 10 shards for performance
- 🚀 Bulk Indexing: Import wordlists via command-line script
- 🎨 Modern UI: Beautiful, responsive interface with real-time feedback
- 📋 Copy to Clipboard: One-click copying of any hash value
🏗️ Architecture
┌─────────────┐
│ Next.js │ ← Modern React UI
│ Frontend │
└──────┬──────┘
│
↓
┌─────────────┐
│ API │ ← REST endpoints
│ Routes │
└──────┬──────┘
│
↓
┌─────────────┐
│Elasticsearch│ ← Distributed storage
│ 10 Shards │ (localhost:9200)
└─────────────┘
🚀 Quick Start
Prerequisites
- Node.js 18.x or higher
- Elasticsearch 8.x running on
localhost:9200 - npm or yarn
Installation
-
Clone the repository
git clone <repository-url> cd hasher -
Install dependencies
npm install -
Configure Elasticsearch (optional)
By default, the app connects to
http://localhost:9200. To change this:export ELASTICSEARCH_NODE=http://your-elasticsearch-host:9200 -
Run the development server
npm run dev -
Open your browser
Navigate to http://localhost:3000
📖 Usage
Web Interface
-
Search for a Hash
- Enter any MD5, SHA1, SHA256, or SHA512 hash
- Click search or press Enter
- View the plaintext result if found in the database
-
Generate Hashes
- Enter any plaintext string
- Get instant hash values for all supported algorithms
- Hashes are automatically saved for future lookups
Bulk Indexing Script
Index large wordlists or dictionaries:
# Basic usage
npm run index-file wordlist.txt
# With custom batch size
npm run index-file wordlist.txt -- --batch-size 500
# Show help
npm run index-file -- --help
Input file format: One word/phrase per line
password
admin
123456
qwerty
Script features:
- ✅ Bulk indexing with configurable batch size
- ✅ Progress indicator with percentage
- ✅ Error handling and reporting
- ✅ Performance metrics (docs/sec)
- ✅ Automatic index refresh
🔌 API Reference
Search Endpoint
POST /api/search
Search for a hash or generate hashes from plaintext.
Request Body:
{
"query": "5f4dcc3b5aa765d61d8327deb882cf99"
}
Response (Hash Found):
{
"found": true,
"hashType": "md5",
"hash": "5f4dcc3b5aa765d61d8327deb882cf99",
"results": [{
"plaintext": "password",
"hashes": {
"md5": "5f4dcc3b5aa765d61d8327deb882cf99",
"sha1": "5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8",
"sha256": "5e884898da28047151d0e56f8dc6292773603d0d6aabbdd62a11ef721d1542d8",
"sha512": "b109f3bbbc244eb82441917ed06d618b9008dd09b3befd1b5e07394c706a8bb980b1d7785e5976ec049b46df5f1326af5a2ea6d103fd07c95385ffab0cacbc86"
}
}]
}
Response (Plaintext Input):
{
"found": true,
"isPlaintext": true,
"plaintext": "password",
"hashes": {
"md5": "5f4dcc3b5aa765d61d8327deb882cf99",
"sha1": "5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8",
"sha256": "5e884898da28047151d0e56f8dc6292773603d0d6aabbdd62a11ef721d1542d8",
"sha512": "b109f3bbbc244eb82441917ed06d618b9008dd09b3befd1b5e07394c706a8bb980b1d7785e5976ec049b46df5f1326af5a2ea6d103fd07c95385ffab0cacbc86"
}
}
Health Check Endpoint
GET /api/health
Check Elasticsearch connection and index status.
Response:
{
"status": "ok",
"elasticsearch": {
"cluster": "elasticsearch",
"status": "green"
},
"index": {
"exists": true,
"name": "hasher",
"stats": {
"documentCount": 1542,
"indexSize": 524288
}
}
}
🗄️ Elasticsearch Index
Index Configuration
- Name:
hasher - Shards: 10 (for horizontal scaling)
- Replicas: 1 (for redundancy)
Mapping Schema
{
"plaintext": {
"type": "text",
"analyzer": "lowercase_analyzer",
"fields": {
"keyword": { "type": "keyword" }
}
},
"md5": { "type": "keyword" },
"sha1": { "type": "keyword" },
"sha256": { "type": "keyword" },
"sha512": { "type": "keyword" },
"created_at": { "type": "date" }
}
📁 Project Structure
hasher/
├── app/
│ ├── api/
│ │ ├── search/
│ │ │ └── route.ts # Search endpoint
│ │ └── health/
│ │ └── route.ts # Health check endpoint
│ ├── layout.tsx # Root layout
│ ├── page.tsx # Main UI component
│ └── globals.css # Global styles
├── lib/
│ ├── elasticsearch.ts # ES client & index config
│ └── hash.ts # Hash utilities
├── scripts/
│ └── index-file.ts # Bulk indexing script
├── package.json
├── tsconfig.json
├── next.config.ts
└── README.md
🛠️ Development
Build for Production
npm run build
npm run start
Environment Variables
Create a .env.local file:
ELASTICSEARCH_NODE=http://localhost:9200
Linting
npm run lint
🔒 Supported Hash Algorithms
| Algorithm | Length (hex) | Detection Pattern |
|---|---|---|
| MD5 | 32 | ^[a-f0-9]{32}$ |
| SHA1 | 40 | ^[a-f0-9]{40}$ |
| SHA256 | 64 | ^[a-f0-9]{64}$ |
| SHA512 | 128 | ^[a-f0-9]{128}$ |
| Bcrypt | 60 | ^\$2[abxy]\$ |
🚀 Performance
- Bulk Indexing: ~1000-5000 docs/sec (depending on hardware)
- Search Latency: <50ms (typical)
- Horizontal Scaling: 10 shards for parallel processing
- Auto-refresh: Instant search availability for new documents
🤝 Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
- Fork the repository
- Create your feature branch (
git checkout -b feature/AmazingFeature) - Commit your changes (
git commit -m 'Add some AmazingFeature') - Push to the branch (
git push origin feature/AmazingFeature) - Open a Pull Request
📝 License
This project is open source and available under the MIT License.
🙏 Acknowledgments
- Built with Next.js
- Powered by Elasticsearch
- Icons by Lucide
- Styled with Tailwind CSS
📧 Support
For issues, questions, or contributions, please open an issue on GitHub.
Made with ❤️ for the security and development community