some implementations

Signed-off-by: ale <ale@manalejandro.com>
Este commit está contenido en:
ale
2025-08-22 18:46:18 +02:00
padre 36718b59bf
commit 39587e85d4
Se han modificado 3 ficheros con 585 adiciones y 71 borrados

Ver fichero

@@ -1,4 +1,4 @@
use crate::parser::{Program, Function, Expression, Statement, Type};
use crate::parser::{Program, Function, Expression, Statement, Type, BinaryOperator};
use crate::targets::Target;
use crate::error::{AleccError, Result};
use std::collections::HashMap;
@@ -8,6 +8,7 @@ pub struct CodeGenerator {
output: String,
label_counter: usize,
string_literals: HashMap<String, String>,
current_function_params: Vec<(String, i32)>, // (name, stack_offset)
}
impl CodeGenerator {
@@ -17,6 +18,7 @@ impl CodeGenerator {
output: String::new(),
label_counter: 0,
string_literals: HashMap::new(),
current_function_params: Vec::new(),
}
}
@@ -49,9 +51,35 @@ impl CodeGenerator {
self.generate_function(function)?;
}
// Generate _start entry point
self.generate_start_function()?;
Ok(self.output.clone())
}
fn generate_start_function(&mut self) -> Result<()> {
self.emit_line("");
self.emit_line(".globl _start");
self.emit_line("_start:");
// Set up stack and call main
self.emit_line(" push rbp");
self.emit_line(" mov rbp, rsp");
// Reserve space for temporary operations (prevents stack corruption)
self.emit_line(" sub rsp, 128");
// Call main function
self.emit_line(" call main");
// Exit syscall with main's return value
self.emit_line(" mov rdi, rax"); // exit status = main's return value
self.emit_line(" mov rax, 60"); // sys_exit syscall number
self.emit_line(" syscall"); // invoke syscall
Ok(())
}
fn emit_header(&mut self) {
match self.target {
Target::I386 => {
@@ -59,7 +87,6 @@ impl CodeGenerator {
self.emit_line(".intel_syntax noprefix");
}
Target::Amd64 => {
self.emit_line(".arch x86_64");
self.emit_line(".intel_syntax noprefix");
}
Target::Arm64 => {
@@ -73,6 +100,9 @@ impl CodeGenerator {
self.emit_line(&format!(".globl {}", function.name));
self.emit_line(&format!("{}:", function.name));
// Set up parameter tracking
self.current_function_params.clear();
// Function prologue
self.emit_function_prologue(&function.parameters)?;
@@ -92,28 +122,63 @@ impl CodeGenerator {
self.emit_line(" push ebp");
self.emit_line(" mov ebp, esp");
// Reserve space for local variables (simplified)
let stack_space = parameters.len() * 4; // Simplified calculation
if stack_space > 0 {
self.emit_line(&format!(" sub esp, {}", stack_space));
// Reserve space for parameters + 128 bytes for temporaries
let stack_space = parameters.len() * 4 + 128;
self.emit_line(&format!(" sub esp, {}", stack_space));
// Store parameters from stack (i386 calling convention)
for (i, (name, _)) in parameters.iter().enumerate() {
let param_offset = -(i as i32 + 1) * 4;
let stack_offset = 8 + i as i32 * 4; // ebp + 8 + offset
self.emit_line(&format!(" mov eax, DWORD PTR [ebp + {}]", stack_offset));
self.emit_line(&format!(" mov DWORD PTR [ebp + {}], eax", param_offset));
self.current_function_params.push((name.clone(), param_offset));
}
}
Target::Amd64 => {
self.emit_line(" push rbp");
self.emit_line(" mov rbp, rsp");
let stack_space = parameters.len() * 8;
if stack_space > 0 {
self.emit_line(&format!(" sub rsp, {}", stack_space));
// Reserve space for parameters + 128 bytes for temporaries
let stack_space = parameters.len() * 8 + 128;
self.emit_line(&format!(" sub rsp, {}", stack_space));
// Store parameters from registers (x86_64 calling convention)
let param_registers = ["rdi", "rsi", "rdx", "rcx", "r8", "r9"];
for (i, (name, _)) in parameters.iter().enumerate() {
let param_offset = -(i as i32 + 1) * 8;
if i < param_registers.len() {
// Parameter passed in register
self.emit_line(&format!(" mov QWORD PTR [rbp + {}], {}", param_offset, param_registers[i]));
} else {
// Parameter passed on stack
let stack_offset = 16 + (i - param_registers.len()) as i32 * 8;
self.emit_line(&format!(" mov rax, QWORD PTR [rbp + {}]", stack_offset));
self.emit_line(&format!(" mov QWORD PTR [rbp + {}], rax", param_offset));
}
self.current_function_params.push((name.clone(), param_offset));
}
}
Target::Arm64 => {
self.emit_line(" stp x29, x30, [sp, #-16]!");
self.emit_line(" mov x29, sp");
let stack_space = (parameters.len() * 8 + 15) & !15; // 16-byte aligned
if stack_space > 0 {
self.emit_line(&format!(" sub sp, sp, #{}", stack_space));
let stack_space = (parameters.len() * 8 + 128 + 15) & !15; // 16-byte aligned
self.emit_line(&format!(" sub sp, sp, #{}", stack_space));
// Store parameters from registers (ARM64 calling convention)
for (i, (name, _)) in parameters.iter().enumerate() {
let param_offset = -(i as i32 + 1) * 8;
if i < 8 {
// Parameter passed in register x0-x7
self.emit_line(&format!(" str x{}, [x29, #{}]", i, param_offset));
} else {
// Parameter passed on stack
let stack_offset = 16 + (i - 8) as i32 * 8;
self.emit_line(&format!(" ldr x9, [x29, #{}]", stack_offset));
self.emit_line(&format!(" str x9, [x29, #{}]", param_offset));
}
self.current_function_params.push((name.clone(), param_offset));
}
}
}
@@ -240,26 +305,77 @@ impl CodeGenerator {
}
}
Expression::Identifier(name) => {
// Load variable (simplified - assumes it's a parameter or global)
match self.target {
Target::I386 => {
self.emit_line(&format!(" mov eax, DWORD PTR [{}]", name));
// Check if it's a function parameter first
if let Some((_, offset)) = self.current_function_params.iter().find(|(param_name, _)| param_name == name) {
// Load parameter from stack
match self.target {
Target::I386 => {
self.emit_line(&format!(" mov eax, DWORD PTR [ebp + {}]", offset));
}
Target::Amd64 => {
self.emit_line(&format!(" mov rax, QWORD PTR [rbp + {}]", offset));
}
Target::Arm64 => {
self.emit_line(&format!(" ldr x0, [x29, #{}]", offset));
}
}
Target::Amd64 => {
self.emit_line(&format!(" mov rax, QWORD PTR [{}]", name));
}
Target::Arm64 => {
self.emit_line(&format!(" adrp x1, {}", name));
self.emit_line(&format!(" add x1, x1, :lo12:{}", name));
self.emit_line(" ldr x0, [x1]");
} else {
// Load global variable
match self.target {
Target::I386 => {
self.emit_line(&format!(" mov eax, DWORD PTR [{}]", name));
}
Target::Amd64 => {
self.emit_line(&format!(" mov rax, QWORD PTR [{}]", name));
}
Target::Arm64 => {
self.emit_line(&format!(" adrp x1, {}", name));
self.emit_line(&format!(" add x1, x1, :lo12:{}", name));
self.emit_line(" ldr x0, [x1]");
}
}
}
}
Expression::Call { function, arguments } => {
// Generate arguments in reverse order
for (i, arg) in arguments.iter().enumerate().rev() {
self.generate_expression(arg)?;
self.push_argument(i)?;
// Generate arguments and place in calling convention registers/stack
match self.target {
Target::I386 => {
// i386: push arguments in reverse order
for arg in arguments.iter().rev() {
self.generate_expression(arg)?;
self.emit_line(" push eax");
}
}
Target::Amd64 => {
// x86_64: first 6 args in registers, rest on stack
let param_registers = ["rdi", "rsi", "rdx", "rcx", "r8", "r9"];
// Generate arguments and store in registers/stack
for (i, arg) in arguments.iter().enumerate() {
self.generate_expression(arg)?;
if i < param_registers.len() {
// Move to parameter register
self.emit_line(&format!(" mov {}, rax", param_registers[i]));
} else {
// Push to stack (reverse order for stack args)
self.emit_line(" push rax");
}
}
}
Target::Arm64 => {
// ARM64: first 8 args in x0-x7, rest on stack
for (i, arg) in arguments.iter().enumerate() {
self.generate_expression(arg)?;
if i < 8 {
if i > 0 {
self.emit_line(&format!(" mov x{}, x0", i));
}
// x0 already has the result for first argument
} else {
self.emit_line(" str x0, [sp, #-16]!");
}
}
}
}
if let Expression::Identifier(func_name) = function.as_ref() {
@@ -270,18 +386,128 @@ impl CodeGenerator {
});
}
// Clean up stack
let stack_cleanup = arguments.len() * self.target.pointer_size();
if stack_cleanup > 0 {
match self.target {
Target::I386 => {
// Clean up stack for arguments that were pushed
match self.target {
Target::I386 => {
let stack_cleanup = arguments.len() * 4;
if stack_cleanup > 0 {
self.emit_line(&format!(" add esp, {}", stack_cleanup));
}
Target::Amd64 => {
// Arguments passed in registers, no cleanup needed
}
Target::Amd64 => {
// Clean up stack arguments (if any)
let stack_args = if arguments.len() > 6 { arguments.len() - 6 } else { 0 };
if stack_args > 0 {
self.emit_line(&format!(" add rsp, {}", stack_args * 8));
}
Target::Arm64 => {
// Arguments passed in registers, no cleanup needed
}
Target::Arm64 => {
// Clean up stack arguments (if any)
let stack_args = if arguments.len() > 8 { arguments.len() - 8 } else { 0 };
if stack_args > 0 {
self.emit_line(&format!(" add sp, sp, #{}", stack_args * 16));
}
}
}
}
Expression::Binary { left, operator, right } => {
// Generate binary operations
// First generate right operand and save it
self.generate_expression(right)?;
match self.target {
Target::I386 => {
self.emit_line(" push eax"); // Save right operand
}
Target::Amd64 => {
self.emit_line(" push rax"); // Save right operand
}
Target::Arm64 => {
self.emit_line(" str x0, [sp, #-16]!"); // Save right operand
}
}
// Generate left operand
self.generate_expression(left)?;
// Pop right operand and perform operation
match self.target {
Target::I386 => {
self.emit_line(" pop ebx"); // Right operand in ebx
match operator {
BinaryOperator::Add => self.emit_line(" add eax, ebx"),
BinaryOperator::Subtract => self.emit_line(" sub eax, ebx"),
BinaryOperator::Multiply => self.emit_line(" imul eax, ebx"),
BinaryOperator::Divide => {
self.emit_line(" cdq"); // Sign extend eax to edx:eax
self.emit_line(" idiv ebx");
}
_ => {
return Err(AleccError::CodegenError {
message: format!("Binary operator {:?} not implemented for i386", operator),
});
}
}
}
Target::Amd64 => {
self.emit_line(" pop rbx"); // Right operand in rbx
match operator {
BinaryOperator::Add => self.emit_line(" add rax, rbx"),
BinaryOperator::Subtract => self.emit_line(" sub rax, rbx"),
BinaryOperator::Multiply => self.emit_line(" imul rax, rbx"),
BinaryOperator::Divide => {
self.emit_line(" cqo"); // Sign extend rax to rdx:rax
self.emit_line(" idiv rbx");
}
// Comparison operators
BinaryOperator::Equal => {
self.emit_line(" cmp rax, rbx");
self.emit_line(" sete al");
self.emit_line(" movzx rax, al");
}
BinaryOperator::NotEqual => {
self.emit_line(" cmp rax, rbx");
self.emit_line(" setne al");
self.emit_line(" movzx rax, al");
}
BinaryOperator::Less => {
self.emit_line(" cmp rax, rbx");
self.emit_line(" setl al");
self.emit_line(" movzx rax, al");
}
BinaryOperator::Greater => {
self.emit_line(" cmp rax, rbx");
self.emit_line(" setg al");
self.emit_line(" movzx rax, al");
}
BinaryOperator::LessEqual => {
self.emit_line(" cmp rax, rbx");
self.emit_line(" setle al");
self.emit_line(" movzx rax, al");
}
BinaryOperator::GreaterEqual => {
self.emit_line(" cmp rax, rbx");
self.emit_line(" setge al");
self.emit_line(" movzx rax, al");
}
_ => {
return Err(AleccError::CodegenError {
message: format!("Binary operator {:?} not implemented for amd64", operator),
});
}
}
}
Target::Arm64 => {
self.emit_line(" ldr x1, [sp], #16"); // Right operand in x1
match operator {
BinaryOperator::Add => self.emit_line(" add x0, x0, x1"),
BinaryOperator::Subtract => self.emit_line(" sub x0, x0, x1"),
BinaryOperator::Multiply => self.emit_line(" mul x0, x0, x1"),
BinaryOperator::Divide => self.emit_line(" sdiv x0, x0, x1"),
_ => {
return Err(AleccError::CodegenError {
message: format!("Binary operator {:?} not implemented for arm64", operator),
});
}
}
}
}

Ver fichero

@@ -210,40 +210,20 @@ impl Linker {
command.push(lib.clone());
}
// Standard libraries
// Standard libraries - skip for now to avoid conflicts
// Our programs use custom runtime with syscalls
/*
if !self.static_link {
command.push("-lc".to_string());
}
*/
Ok(command)
}
fn add_standard_startup_files(&self, command: &mut Vec<String>) -> Result<()> {
let lib_path = match self.target {
Target::I386 => "/usr/lib/i386-linux-gnu",
Target::Amd64 => "/usr/lib/x86_64-linux-gnu",
Target::Arm64 => "/usr/lib/aarch64-linux-gnu",
};
// Add crt1.o, crti.o, crtbegin.o
let startup_files = if self.pie {
vec!["Scrt1.o", "crti.o"]
} else {
vec!["crt1.o", "crti.o"]
};
for file in startup_files {
command.push(format!("{}/{}", lib_path, file));
}
// Add GCC's crtbegin.o
let gcc_lib = self.get_gcc_lib_path()?;
if self.shared {
command.push(format!("{}/crtbeginS.o", gcc_lib));
} else {
command.push(format!("{}/crtbegin.o", gcc_lib));
}
// Skip startup files when we have our own _start
// This prevents conflicts with our custom _start implementation
Ok(())
}

Ver fichero

@@ -169,7 +169,9 @@ pub struct Parser {
impl Parser {
pub fn new(tokens: Vec<Token>) -> Self {
Self { tokens, current: 0 }
let mut parser = Self { tokens, current: 0 };
parser.skip_newlines(); // Skip initial newlines
parser
}
pub fn parse(&mut self) -> Result<Program> {
@@ -384,9 +386,24 @@ impl Parser {
if !self.is_at_end() {
self.current += 1;
}
self.skip_newlines();
self.previous()
}
fn skip_newlines(&mut self) {
while !self.is_at_end() {
if let Ok(token) = self.current_token() {
if token.token_type == TokenType::Newline {
self.current += 1;
} else {
break;
}
} else {
break;
}
}
}
fn previous(&self) -> Result<&Token> {
self.tokens.get(self.current - 1).ok_or_else(|| AleccError::ParseError {
line: 0,
@@ -426,6 +443,16 @@ impl Parser {
}
}
fn match_tokens(&mut self, token_types: &[TokenType]) -> bool {
for token_type in token_types {
if self.check(token_type) {
self.advance().unwrap();
return true;
}
}
false
}
fn consume(&mut self, token_type: &TokenType, message: &str) -> Result<&Token> {
if self.check(token_type) {
self.advance()
@@ -495,6 +522,7 @@ impl Parser {
self.consume(&TokenType::RightParen, "Expected ')' after parameters")?;
let body = if self.check(&TokenType::LeftBrace) {
self.advance()?; // Consume the LeftBrace
self.parse_block_statement()?
} else {
self.consume(&TokenType::Semicolon, "Expected ';' after function declaration")?;
@@ -535,8 +563,7 @@ impl Parser {
}
fn parse_block_statement(&mut self) -> Result<Statement> {
self.consume(&TokenType::LeftBrace, "Expected '{'")?;
// Note: LeftBrace was already consumed by match_token in parse_statement
let mut statements = Vec::new();
while !self.check(&TokenType::RightBrace) && !self.is_at_end() {
statements.push(self.parse_statement()?);
@@ -547,7 +574,7 @@ impl Parser {
}
fn parse_statement(&mut self) -> Result<Statement> {
// Simplified statement parsing
// Try to parse different types of statements
if self.match_token(&TokenType::Return) {
let expr = if !self.check(&TokenType::Semicolon) {
Some(self.parse_expression()?)
@@ -556,25 +583,306 @@ impl Parser {
};
self.consume(&TokenType::Semicolon, "Expected ';' after return")?;
Ok(Statement::Return(expr))
} else if self.match_token(&TokenType::If) {
self.parse_if_statement()
} else if self.match_token(&TokenType::While) {
self.parse_while_statement()
} else if self.match_token(&TokenType::For) {
self.parse_for_statement()
} else if self.match_token(&TokenType::LeftBrace) {
self.parse_block_statement()
} else if self.is_type(&self.current_token()?.token_type) {
// Variable declaration - convert to Statement format
let var_type = self.parse_type()?;
let name = if let TokenType::Identifier(name) = &self.advance()?.token_type {
name.clone()
} else {
return Err(AleccError::ParseError {
line: self.current_token()?.line,
column: self.current_token()?.column,
message: "Expected variable name".to_string(),
});
};
let initializer = if self.match_token(&TokenType::Assign) {
Some(self.parse_expression()?)
} else {
None
};
self.consume(&TokenType::Semicolon, "Expected ';' after variable declaration")?;
Ok(Statement::Declaration {
name,
var_type,
initializer,
})
} else {
// Expression statement
let expr = self.parse_expression()?;
self.consume(&TokenType::Semicolon, "Expected ';' after expression")?;
Ok(Statement::Expression(expr))
}
}
fn parse_if_statement(&mut self) -> Result<Statement> {
self.consume(&TokenType::LeftParen, "Expected '(' after 'if'")?;
let condition = self.parse_expression()?;
self.consume(&TokenType::RightParen, "Expected ')' after if condition")?;
let then_stmt = Box::new(self.parse_statement()?);
let else_stmt = if self.match_token(&TokenType::Else) {
Some(Box::new(self.parse_statement()?))
} else {
None
};
Ok(Statement::If {
condition,
then_stmt,
else_stmt,
})
}
fn parse_while_statement(&mut self) -> Result<Statement> {
self.consume(&TokenType::LeftParen, "Expected '(' after 'while'")?;
let condition = self.parse_expression()?;
self.consume(&TokenType::RightParen, "Expected ')' after while condition")?;
let body = Box::new(self.parse_statement()?);
Ok(Statement::While { condition, body })
}
fn parse_for_statement(&mut self) -> Result<Statement> {
self.consume(&TokenType::LeftParen, "Expected '(' after 'for'")?;
let init = if self.check(&TokenType::Semicolon) {
None
} else {
Some(Box::new(self.parse_statement()?))
};
if init.is_none() {
self.advance()?; // consume semicolon
}
let condition = if self.check(&TokenType::Semicolon) {
None
} else {
Some(self.parse_expression()?)
};
self.consume(&TokenType::Semicolon, "Expected ';' after for condition")?;
let increment = if self.check(&TokenType::RightParen) {
None
} else {
Some(self.parse_expression()?)
};
self.consume(&TokenType::RightParen, "Expected ')' after for clauses")?;
let body = Box::new(self.parse_statement()?);
Ok(Statement::For {
init,
condition,
increment,
body,
})
}
fn is_type(&self, token_type: &TokenType) -> bool {
matches!(token_type,
TokenType::Int | TokenType::Float | TokenType::Double |
TokenType::Char | TokenType::Void | TokenType::Short |
TokenType::Long | TokenType::Signed | TokenType::Unsigned)
}
fn parse_expression(&mut self) -> Result<Expression> {
// Simplified expression parsing - just literals and identifiers for now
match &self.advance()?.token_type {
self.parse_logical_or()
}
fn parse_logical_or(&mut self) -> Result<Expression> {
let mut expr = self.parse_logical_and()?;
while self.match_token(&TokenType::LogicalOr) {
let operator = BinaryOperator::LogicalOr;
let right = self.parse_logical_and()?;
expr = Expression::Binary {
left: Box::new(expr),
operator,
right: Box::new(right),
};
}
Ok(expr)
}
fn parse_logical_and(&mut self) -> Result<Expression> {
let mut expr = self.parse_equality()?;
while self.match_token(&TokenType::LogicalAnd) {
let operator = BinaryOperator::LogicalAnd;
let right = self.parse_equality()?;
expr = Expression::Binary {
left: Box::new(expr),
operator,
right: Box::new(right),
};
}
Ok(expr)
}
fn parse_equality(&mut self) -> Result<Expression> {
let mut expr = self.parse_comparison()?;
while self.match_tokens(&[TokenType::Equal, TokenType::NotEqual]) {
let operator = match self.previous()?.token_type {
TokenType::Equal => BinaryOperator::Equal,
TokenType::NotEqual => BinaryOperator::NotEqual,
_ => unreachable!(),
};
let right = self.parse_comparison()?;
expr = Expression::Binary {
left: Box::new(expr),
operator,
right: Box::new(right),
};
}
Ok(expr)
}
fn parse_comparison(&mut self) -> Result<Expression> {
let mut expr = self.parse_term()?;
while self.match_tokens(&[TokenType::Greater, TokenType::GreaterEqual,
TokenType::Less, TokenType::LessEqual]) {
let operator = match self.previous()?.token_type {
TokenType::Greater => BinaryOperator::Greater,
TokenType::GreaterEqual => BinaryOperator::GreaterEqual,
TokenType::Less => BinaryOperator::Less,
TokenType::LessEqual => BinaryOperator::LessEqual,
_ => unreachable!(),
};
let right = self.parse_term()?;
expr = Expression::Binary {
left: Box::new(expr),
operator,
right: Box::new(right),
};
}
Ok(expr)
}
fn parse_term(&mut self) -> Result<Expression> {
let mut expr = self.parse_factor()?;
while self.match_tokens(&[TokenType::Minus, TokenType::Plus]) {
let operator = match self.previous()?.token_type {
TokenType::Minus => BinaryOperator::Subtract,
TokenType::Plus => BinaryOperator::Add,
_ => unreachable!(),
};
let right = self.parse_factor()?;
expr = Expression::Binary {
left: Box::new(expr),
operator,
right: Box::new(right),
};
}
Ok(expr)
}
fn parse_factor(&mut self) -> Result<Expression> {
let mut expr = self.parse_unary()?;
while self.match_tokens(&[TokenType::Divide, TokenType::Multiply, TokenType::Modulo]) {
let operator = match self.previous()?.token_type {
TokenType::Divide => BinaryOperator::Divide,
TokenType::Multiply => BinaryOperator::Multiply,
TokenType::Modulo => BinaryOperator::Modulo,
_ => unreachable!(),
};
let right = self.parse_unary()?;
expr = Expression::Binary {
left: Box::new(expr),
operator,
right: Box::new(right),
};
}
Ok(expr)
}
fn parse_unary(&mut self) -> Result<Expression> {
if self.match_tokens(&[TokenType::LogicalNot, TokenType::Minus, TokenType::Plus]) {
let operator = match self.previous()?.token_type {
TokenType::LogicalNot => UnaryOperator::LogicalNot,
TokenType::Minus => UnaryOperator::Minus,
TokenType::Plus => UnaryOperator::Plus,
_ => unreachable!(),
};
let right = self.parse_unary()?;
return Ok(Expression::Unary {
operator,
operand: Box::new(right),
});
}
self.parse_call()
}
fn parse_call(&mut self) -> Result<Expression> {
let mut expr = self.parse_primary()?;
while self.match_token(&TokenType::LeftParen) {
expr = self.finish_call(expr)?;
}
Ok(expr)
}
fn finish_call(&mut self, callee: Expression) -> Result<Expression> {
let mut arguments = Vec::new();
if !self.check(&TokenType::RightParen) {
loop {
arguments.push(self.parse_expression()?);
if !self.match_token(&TokenType::Comma) {
break;
}
}
}
self.consume(&TokenType::RightParen, "Expected ')' after arguments")?;
Ok(Expression::Call {
function: Box::new(callee),
arguments,
})
}
fn parse_primary(&mut self) -> Result<Expression> {
if self.match_token(&TokenType::LeftParen) {
let expr = self.parse_expression()?;
self.consume(&TokenType::RightParen, "Expected ')' after expression")?;
return Ok(expr);
}
let token = self.advance()?;
match &token.token_type {
TokenType::IntegerLiteral(value) => Ok(Expression::IntegerLiteral(*value)),
TokenType::FloatLiteral(value) => Ok(Expression::FloatLiteral(*value)),
TokenType::StringLiteral(value) => Ok(Expression::StringLiteral(value.clone())),
TokenType::CharLiteral(value) => Ok(Expression::CharLiteral(*value)),
TokenType::Identifier(name) => Ok(Expression::Identifier(name.clone())),
_ => Err(AleccError::ParseError {
line: self.current_token()?.line,
column: self.current_token()?.column,
message: "Expected expression".to_string(),
line: token.line,
column: token.column,
message: format!("Expected expression, found {:?}", token.token_type),
}),
}
}