519 líneas
19 KiB
Python
519 líneas
19 KiB
Python
"""
|
|
CUDA Quantum Python Bridge
|
|
Provides a unified interface for Node.js to interact with CUDA Quantum functionality
|
|
"""
|
|
|
|
import json
|
|
import sys
|
|
import traceback
|
|
import numpy as np
|
|
from typing import Dict, List, Any, Optional, Union, Tuple
|
|
import logging
|
|
|
|
# Setup logging
|
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
logger = logging.getLogger(__name__)
|
|
|
|
try:
|
|
import cudaq
|
|
from cudaq import spin
|
|
CUDAQ_AVAILABLE = True
|
|
print("INFO - CUDA Quantum successfully imported", flush=True)
|
|
except ImportError as e:
|
|
CUDAQ_AVAILABLE = False
|
|
print(f"WARNING - CUDA Quantum not available: {e}", flush=True)
|
|
print("WARNING - Running in mock mode - install CUDA Quantum for full functionality: pip install cudaq", flush=True)
|
|
|
|
|
|
class QuantumKernelManager:
|
|
"""Manages quantum kernels and their execution"""
|
|
|
|
def __init__(self):
|
|
self.kernels: Dict[str, Any] = {}
|
|
self.kernel_metadata: Dict[str, Dict] = {}
|
|
|
|
def create_kernel(self, name: str, num_qubits: int, parameters: Optional[List[Dict]] = None) -> Dict:
|
|
"""Create a new quantum kernel"""
|
|
if not CUDAQ_AVAILABLE:
|
|
# Mock mode - store kernel metadata without actual CUDA Quantum
|
|
self.kernel_metadata[name] = {
|
|
"num_qubits": num_qubits,
|
|
"parameters": parameters or [],
|
|
"operations": []
|
|
}
|
|
return {"success": True, "kernel_name": name, "mode": "mock"}
|
|
|
|
try:
|
|
# Create kernel dynamically
|
|
kernel_code = self._generate_kernel_code(name, num_qubits, parameters or [])
|
|
exec(kernel_code, globals())
|
|
|
|
self.kernels[name] = globals()[name]
|
|
self.kernel_metadata[name] = {
|
|
"num_qubits": num_qubits,
|
|
"parameters": parameters or [],
|
|
"operations": []
|
|
}
|
|
|
|
return {"success": True, "kernel_name": name}
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error creating kernel {name}: {e}")
|
|
return {"error": str(e), "traceback": traceback.format_exc()}
|
|
|
|
def _generate_kernel_code(self, name: str, num_qubits: int, parameters: List[Dict]) -> str:
|
|
"""Generate CUDA Quantum kernel code dynamically"""
|
|
param_str = ""
|
|
if parameters:
|
|
param_types = {
|
|
"int": "int",
|
|
"float": "float",
|
|
"complex": "complex",
|
|
"list[int]": "list[int]",
|
|
"list[float]": "list[float]",
|
|
"list[complex]": "list[complex]"
|
|
}
|
|
param_list = []
|
|
for p in parameters:
|
|
param_list.append(f"{p['name']}: {param_types.get(p['type'], 'float')}")
|
|
param_str = ", " + ", ".join(param_list)
|
|
|
|
code = f'''
|
|
@cudaq.kernel
|
|
def {name}({param_str.lstrip(', ')}):
|
|
"""Dynamically generated quantum kernel"""
|
|
qubits = cudaq.qvector({num_qubits})
|
|
# Placeholder - operations will be added dynamically
|
|
pass
|
|
'''
|
|
return code
|
|
|
|
def apply_gate(self, kernel_name: str, gate_name: str, qubits: List[int],
|
|
parameters: Optional[List[float]] = None,
|
|
controls: Optional[List[int]] = None,
|
|
adjoint: bool = False) -> Dict:
|
|
"""Apply a quantum gate to a kernel"""
|
|
if not CUDAQ_AVAILABLE:
|
|
return {"error": "CUDA Quantum not available"}
|
|
|
|
if kernel_name not in self.kernel_metadata:
|
|
return {"error": f"Kernel {kernel_name} not found"}
|
|
|
|
try:
|
|
operation = {
|
|
"gate": gate_name,
|
|
"qubits": qubits,
|
|
"parameters": parameters,
|
|
"controls": controls,
|
|
"adjoint": adjoint
|
|
}
|
|
self.kernel_metadata[kernel_name]["operations"].append(operation)
|
|
|
|
# Rebuild kernel with new operations
|
|
self._rebuild_kernel(kernel_name)
|
|
|
|
return {"success": True}
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error applying gate {gate_name} to {kernel_name}: {e}")
|
|
return {"error": str(e), "traceback": traceback.format_exc()}
|
|
|
|
def _rebuild_kernel(self, kernel_name: str):
|
|
"""Rebuild kernel with accumulated operations"""
|
|
metadata = self.kernel_metadata[kernel_name]
|
|
num_qubits = metadata["num_qubits"]
|
|
parameters = metadata["parameters"]
|
|
operations = metadata["operations"]
|
|
|
|
# Generate parameter string
|
|
param_str = ""
|
|
if parameters:
|
|
param_types = {
|
|
"int": "int", "float": "float", "complex": "complex",
|
|
"list[int]": "list[int]", "list[float]": "list[float]",
|
|
"list[complex]": "list[complex]"
|
|
}
|
|
param_list = []
|
|
for p in parameters:
|
|
param_list.append(f"{p['name']}: {param_types.get(p['type'], 'float')}")
|
|
param_str = ", " + ", ".join(param_list)
|
|
|
|
# Generate operations code
|
|
ops_code = []
|
|
for op in operations:
|
|
gate_code = self._generate_gate_code(op)
|
|
if gate_code:
|
|
ops_code.append(f" {gate_code}")
|
|
|
|
code = f'''
|
|
@cudaq.kernel
|
|
def {kernel_name}({param_str.lstrip(', ')}):
|
|
"""Dynamically generated quantum kernel with operations"""
|
|
qubits = cudaq.qvector({num_qubits})
|
|
{chr(10).join(ops_code) if ops_code else " pass"}
|
|
'''
|
|
|
|
# Execute and register new kernel
|
|
exec(code, globals())
|
|
self.kernels[kernel_name] = globals()[kernel_name]
|
|
|
|
def _generate_gate_code(self, operation: Dict) -> str:
|
|
"""Generate code for a single gate operation"""
|
|
gate = operation["gate"]
|
|
qubits = operation["qubits"]
|
|
parameters = operation.get("parameters", [])
|
|
controls = operation.get("controls", [])
|
|
adjoint = operation.get("adjoint", False)
|
|
|
|
if len(qubits) == 1:
|
|
target = f"qubits[{qubits[0]}]"
|
|
else:
|
|
target = f"[{', '.join([f'qubits[{q}]' for q in qubits])}]"
|
|
|
|
# Handle parameterized gates
|
|
if parameters:
|
|
if len(parameters) == 1:
|
|
gate_call = f"{gate}({parameters[0]}, {target})"
|
|
else:
|
|
params_str = ", ".join(map(str, parameters))
|
|
gate_call = f"{gate}({params_str}, {target})"
|
|
else:
|
|
gate_call = f"{gate}({target})"
|
|
|
|
# Handle controlled gates
|
|
if controls:
|
|
if len(controls) == 1:
|
|
gate_call = f"{gate}.ctrl(qubits[{controls[0]}], {target})"
|
|
else:
|
|
ctrl_str = "[" + ", ".join([f"qubits[{c}]" for c in controls]) + "]"
|
|
gate_call = f"{gate}.ctrl({ctrl_str}, {target})"
|
|
|
|
# Handle adjoint
|
|
if adjoint:
|
|
gate_call = gate_call.replace(gate, f"{gate}.adj")
|
|
|
|
return gate_call
|
|
|
|
|
|
class QuantumExecutor:
|
|
"""Handles execution of quantum kernels"""
|
|
|
|
def __init__(self, kernel_manager: QuantumKernelManager):
|
|
self.kernel_manager = kernel_manager
|
|
|
|
def set_target(self, target: str, configuration: Optional[Dict] = None) -> Dict:
|
|
"""Set quantum execution target"""
|
|
if not CUDAQ_AVAILABLE:
|
|
return {"error": "CUDA Quantum not available"}
|
|
|
|
try:
|
|
if configuration:
|
|
cudaq.set_target(target, **configuration)
|
|
else:
|
|
cudaq.set_target(target)
|
|
|
|
return {"success": True, "target": target}
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error setting target {target}: {e}")
|
|
return {"error": str(e), "traceback": traceback.format_exc()}
|
|
|
|
def sample(self, kernel_name: str, shots: int = 1000,
|
|
parameters: Optional[Dict] = None) -> Dict:
|
|
"""Sample measurement results from quantum kernel"""
|
|
if not CUDAQ_AVAILABLE:
|
|
# Mock mode - return simulated results
|
|
if kernel_name not in self.kernel_manager.kernel_metadata:
|
|
return {"error": f"Kernel {kernel_name} not found"}
|
|
|
|
import random
|
|
num_qubits = self.kernel_manager.kernel_metadata[kernel_name]["num_qubits"]
|
|
|
|
# Generate mock results for demonstration
|
|
mock_counts = {}
|
|
if num_qubits == 2: # Bell pair example
|
|
mock_counts = {"00": shots//2 + random.randint(-50, 50),
|
|
"11": shots//2 + random.randint(-50, 50)}
|
|
else:
|
|
# Random distribution
|
|
for i in range(min(4, 2**num_qubits)):
|
|
binary = format(i, f'0{num_qubits}b')
|
|
mock_counts[binary] = random.randint(shots//10, shots//3)
|
|
|
|
return {
|
|
"success": True,
|
|
"counts": mock_counts,
|
|
"shots": shots,
|
|
"total_counts": sum(mock_counts.values()),
|
|
"mode": "mock"
|
|
}
|
|
|
|
if kernel_name not in self.kernel_manager.kernels:
|
|
return {"error": f"Kernel {kernel_name} not found"}
|
|
|
|
try:
|
|
kernel = self.kernel_manager.kernels[kernel_name]
|
|
|
|
if parameters:
|
|
# Call with parameters
|
|
args = [parameters[p["name"]] for p in
|
|
self.kernel_manager.kernel_metadata[kernel_name]["parameters"]]
|
|
result = cudaq.sample(kernel, *args, shots_count=shots)
|
|
else:
|
|
result = cudaq.sample(kernel, shots_count=shots)
|
|
|
|
# Convert result to serializable format
|
|
counts = {}
|
|
for bits, count in result.items():
|
|
counts[str(bits)] = count
|
|
|
|
return {
|
|
"success": True,
|
|
"counts": counts,
|
|
"shots": shots,
|
|
"total_counts": sum(counts.values())
|
|
}
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error sampling kernel {kernel_name}: {e}")
|
|
return {"error": str(e), "traceback": traceback.format_exc()}
|
|
|
|
def observe(self, kernel_name: str, hamiltonian_terms: List[Dict],
|
|
shots: int = 1000, parameters: Optional[Dict] = None) -> Dict:
|
|
"""Compute expectation value of Hamiltonian"""
|
|
if not CUDAQ_AVAILABLE:
|
|
return {"error": "CUDA Quantum not available"}
|
|
|
|
if kernel_name not in self.kernel_manager.kernels:
|
|
return {"error": f"Kernel {kernel_name} not found"}
|
|
|
|
try:
|
|
kernel = self.kernel_manager.kernels[kernel_name]
|
|
|
|
# Build Hamiltonian from terms
|
|
hamiltonian = self._build_hamiltonian(hamiltonian_terms)
|
|
|
|
if parameters:
|
|
args = [parameters[p["name"]] for p in
|
|
self.kernel_manager.kernel_metadata[kernel_name]["parameters"]]
|
|
result = cudaq.observe(kernel, hamiltonian, *args, shots_count=shots)
|
|
else:
|
|
result = cudaq.observe(kernel, hamiltonian, shots_count=shots)
|
|
|
|
return {
|
|
"success": True,
|
|
"expectation": result.expectation(),
|
|
"variance": result.variance() if hasattr(result, 'variance') else None,
|
|
"shots": shots
|
|
}
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error observing kernel {kernel_name}: {e}")
|
|
return {"error": str(e), "traceback": traceback.format_exc()}
|
|
|
|
def get_state(self, kernel_name: str, parameters: Optional[Dict] = None) -> Dict:
|
|
"""Get quantum state vector"""
|
|
if not CUDAQ_AVAILABLE:
|
|
return {"error": "CUDA Quantum not available"}
|
|
|
|
if kernel_name not in self.kernel_manager.kernels:
|
|
return {"error": f"Kernel {kernel_name} not found"}
|
|
|
|
try:
|
|
kernel = self.kernel_manager.kernels[kernel_name]
|
|
|
|
if parameters:
|
|
args = [parameters[p["name"]] for p in
|
|
self.kernel_manager.kernel_metadata[kernel_name]["parameters"]]
|
|
state = cudaq.get_state(kernel, *args)
|
|
else:
|
|
state = cudaq.get_state(kernel)
|
|
|
|
# Convert state to serializable format
|
|
state_array = np.array(state)
|
|
state_list = []
|
|
for amplitude in state_array:
|
|
state_list.append({
|
|
"real": float(amplitude.real),
|
|
"imag": float(amplitude.imag)
|
|
})
|
|
|
|
return {
|
|
"success": True,
|
|
"state": state_list,
|
|
"dimension": len(state_list)
|
|
}
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error getting state for kernel {kernel_name}: {e}")
|
|
return {"error": str(e), "traceback": traceback.format_exc()}
|
|
|
|
def _build_hamiltonian(self, terms: List[Dict]):
|
|
"""Build CUDA Quantum Hamiltonian from term list"""
|
|
h = None
|
|
|
|
for term in terms:
|
|
paulis = term["paulis"]
|
|
qubits = term["qubits"]
|
|
coeff_real = term["coefficient"]["real"]
|
|
coeff_imag = term["coefficient"]["imag"]
|
|
|
|
# Build Pauli string
|
|
pauli_term = None
|
|
for i, (pauli, qubit) in enumerate(zip(paulis, qubits)):
|
|
if pauli == 'I':
|
|
continue
|
|
elif pauli == 'X':
|
|
p = spin.x(qubit)
|
|
elif pauli == 'Y':
|
|
p = spin.y(qubit)
|
|
elif pauli == 'Z':
|
|
p = spin.z(qubit)
|
|
else:
|
|
raise ValueError(f"Invalid Pauli operator: {pauli}")
|
|
|
|
if pauli_term is None:
|
|
pauli_term = p
|
|
else:
|
|
pauli_term = pauli_term * p
|
|
|
|
if pauli_term is not None:
|
|
# Apply coefficient
|
|
if coeff_imag != 0:
|
|
coeff = complex(coeff_real, coeff_imag)
|
|
else:
|
|
coeff = coeff_real
|
|
|
|
term_contribution = coeff * pauli_term
|
|
|
|
if h is None:
|
|
h = term_contribution
|
|
else:
|
|
h = h + term_contribution
|
|
|
|
return h if h is not None else 0.0 * spin.i(0)
|
|
|
|
|
|
# Global instances
|
|
kernel_manager = QuantumKernelManager()
|
|
executor = QuantumExecutor(kernel_manager)
|
|
|
|
|
|
def dispatch_command(command: str, **kwargs) -> Dict:
|
|
"""Main dispatch function for Python bridge commands"""
|
|
try:
|
|
if command == "create_kernel":
|
|
return kernel_manager.create_kernel(
|
|
kwargs["name"],
|
|
kwargs["num_qubits"],
|
|
kwargs.get("parameters")
|
|
)
|
|
|
|
elif command == "apply_gate":
|
|
return kernel_manager.apply_gate(
|
|
kwargs["kernel_name"],
|
|
kwargs["gate_name"],
|
|
kwargs["qubits"],
|
|
kwargs.get("parameters"),
|
|
kwargs.get("controls"),
|
|
kwargs.get("adjoint", False)
|
|
)
|
|
|
|
elif command == "set_target":
|
|
return executor.set_target(
|
|
kwargs["target"],
|
|
kwargs.get("configuration")
|
|
)
|
|
|
|
elif command == "sample":
|
|
return executor.sample(
|
|
kwargs["kernel_name"],
|
|
kwargs.get("shots", 1000),
|
|
kwargs.get("parameters")
|
|
)
|
|
|
|
elif command == "observe":
|
|
return executor.observe(
|
|
kwargs["kernel_name"],
|
|
kwargs["hamiltonian_terms"],
|
|
kwargs.get("shots", 1000),
|
|
kwargs.get("parameters")
|
|
)
|
|
|
|
elif command == "get_state":
|
|
return executor.get_state(
|
|
kwargs["kernel_name"],
|
|
kwargs.get("parameters")
|
|
)
|
|
|
|
elif command == "list_kernels":
|
|
return {
|
|
"success": True,
|
|
"kernels": list(kernel_manager.kernels.keys()),
|
|
"metadata": kernel_manager.kernel_metadata
|
|
}
|
|
|
|
elif command == "get_platform_info":
|
|
if not CUDAQ_AVAILABLE:
|
|
return {"error": "CUDA Quantum not available"}
|
|
|
|
try:
|
|
platform = cudaq.get_platform()
|
|
return {
|
|
"success": True,
|
|
"platform_name": platform.name(),
|
|
"num_qpus": platform.num_qpus(),
|
|
"is_simulator": platform.is_simulator(),
|
|
"is_remote": platform.is_remote()
|
|
}
|
|
except:
|
|
return {"success": True, "platform_name": "default"}
|
|
|
|
else:
|
|
return {"error": f"Unknown command: {command}"}
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error executing command {command}: {e}")
|
|
return {"error": str(e), "traceback": traceback.format_exc()}
|
|
|
|
|
|
def main():
|
|
"""Main entry point for standalone execution"""
|
|
if len(sys.argv) > 1:
|
|
# Command line mode
|
|
command_json = sys.argv[1]
|
|
try:
|
|
command_data = json.loads(command_json)
|
|
result = dispatch_command(**command_data)
|
|
print(json.dumps(result))
|
|
except Exception as e:
|
|
print(json.dumps({"error": str(e), "traceback": traceback.format_exc()}))
|
|
else:
|
|
# Server mode - read from stdin for MCP communication
|
|
print("CUDA Quantum Python Bridge - Ready")
|
|
sys.stdout.flush()
|
|
|
|
try:
|
|
while True:
|
|
line = sys.stdin.readline()
|
|
if not line:
|
|
break
|
|
|
|
try:
|
|
command_data = json.loads(line.strip())
|
|
result = dispatch_command(**command_data)
|
|
print(json.dumps(result))
|
|
sys.stdout.flush()
|
|
except json.JSONDecodeError:
|
|
print(json.dumps({"error": "Invalid JSON"}))
|
|
sys.stdout.flush()
|
|
except Exception as e:
|
|
print(json.dumps({"error": str(e)}))
|
|
sys.stdout.flush()
|
|
|
|
except KeyboardInterrupt:
|
|
pass
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main() |