Files
mcp-quantum/python/cudaq_bridge.py
2025-10-08 04:32:27 +02:00

496 líneas
17 KiB
Python

"""
CUDA Quantum Python Bridge - Production Version
Provides a unified interface for Node.js to interact with CUDA Quantum functionality
"""
import json
import sys
import traceback
import numpy as np
from typing import Dict, List, Any, Optional, Union, Tuple
import logging
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
try:
import cudaq
from cudaq import spin
CUDAQ_AVAILABLE = True
print("INFO - CUDA Quantum successfully imported", flush=True)
except ImportError as e:
CUDAQ_AVAILABLE = False
print(f"WARNING - CUDA Quantum not available: {e}", flush=True)
print("WARNING - Running in development mode without CUDA Quantum", flush=True)
# Create mock cudaq module for development
class MockCudaq:
@staticmethod
def kernel(func):
return func
@staticmethod
def get_targets():
return ['mock-cpu', 'mock-gpu']
@staticmethod
def set_target(target, **kwargs):
pass
@staticmethod
def sample(kernel, *args, **kwargs):
# Mock sampling results
return {'00': 500, '11': 500}
@staticmethod
def observe(kernel, hamiltonian, *args, **kwargs):
# Mock observation result
class MockResult:
def expectation(self):
return 0.0
return MockResult()
@staticmethod
def get_state(kernel, *args):
# Mock state vector
return [1.0+0j, 0.0+0j]
@staticmethod
def qview():
pass
class MockSpin:
@staticmethod
def z(index):
return f"Z{index}"
cudaq = MockCudaq()
spin = MockSpin()
class QuantumKernelManager:
"""Manages quantum kernels and their execution"""
def __init__(self):
self.kernels: Dict[str, Any] = {}
self.kernel_metadata: Dict[str, Dict] = {}
def create_kernel(self, name: str, num_qubits: int, parameters: Optional[List[Dict]] = None) -> Dict:
"""Create a new quantum kernel"""
if not CUDAQ_AVAILABLE:
# Mock mode - store kernel metadata
self.kernel_metadata[name] = {
"num_qubits": num_qubits,
"parameters": parameters or [],
"operations": []
}
return {"success": True, "kernel_name": name, "mode": "mock"}
try:
# Create kernel dynamically
kernel_code = self._generate_kernel_code(name, num_qubits, parameters or [])
exec(kernel_code, globals())
self.kernels[name] = globals()[name]
self.kernel_metadata[name] = {
"num_qubits": num_qubits,
"parameters": parameters or [],
"operations": []
}
return {"success": True, "kernel_name": name}
except Exception as e:
logger.error(f"Error creating kernel {name}: {e}")
return {"error": str(e), "traceback": traceback.format_exc()}
def _generate_kernel_code(self, name: str, num_qubits: int, parameters: List[Dict]) -> str:
"""Generate CUDA Quantum kernel code dynamically"""
param_str = ""
if parameters:
param_types = {
"float": "float",
"int": "int",
"complex": "complex",
"angle": "float"
}
params = []
for param in parameters:
param_type = param_types.get(param.get("type", "float"), "float")
params.append(f"{param['name']}: {param_type}")
param_str = ", " + ", ".join(params)
kernel_code = f"""
@cudaq.kernel
def {name}(qubits: cudaq.qview{param_str}):
pass
"""
return kernel_code
def apply_gate(self, kernel_name: str, gate_name: str,
target_qubits: List[int], control_qubits: Optional[List[int]] = None,
parameters: Optional[List[float]] = None,
adjoint: bool = False) -> Dict:
"""Apply a quantum gate to a kernel"""
if kernel_name not in self.kernel_metadata:
return {"error": f"Kernel {kernel_name} not found"}
try:
operation = {
"gate": gate_name,
"targets": target_qubits,
"controls": control_qubits or [],
"parameters": parameters or [],
"adjoint": adjoint
}
self.kernel_metadata[kernel_name]["operations"].append(operation)
return {"success": True, "operation": operation}
except Exception as e:
logger.error(f"Error applying gate {gate_name} to kernel {kernel_name}: {e}")
return {"error": str(e), "traceback": traceback.format_exc()}
class QuantumExecutor:
"""Handles quantum circuit execution and measurement"""
def __init__(self):
self.current_target = None
def set_target(self, target_name: str, **kwargs) -> Dict:
"""Set the quantum computing target/backend"""
if not CUDAQ_AVAILABLE:
return {"success": True, "target": target_name, "mode": "mock"}
try:
# Get available targets first
available_targets = cudaq.get_targets()
# Validate target exists
if target_name not in available_targets:
# Try common fallbacks
fallback_targets = ['qpp-cpu', 'density-matrix-cpu', 'default']
for fallback in fallback_targets:
if fallback in available_targets:
print(f"WARNING - Target {target_name} not available, using {fallback}", flush=True)
cudaq.set_target(fallback, **kwargs)
self.current_target = fallback
return {"success": True, "target": fallback, "fallback": True}
return {"error": f"Invalid target name ({target_name})", "available_targets": available_targets}
# Set the target
cudaq.set_target(target_name, **kwargs)
self.current_target = target_name
return {"success": True, "target": target_name}
except Exception as e:
try:
cudaq.reset_target()
except:
pass
logger.error(f"Error setting target {target_name}: {e}")
return {"error": str(e), "traceback": traceback.format_exc()}
def sample(self, kernel_name: str, shots: int = 1000,
parameters: Optional[Dict] = None) -> Dict:
"""Execute quantum circuit and sample measurement results"""
if kernel_name not in kernel_manager.kernels:
return {"error": f"Kernel {kernel_name} not found"}
try:
kernel = kernel_manager.kernels[kernel_name]
# Prepare parameters
args = []
if parameters:
# Add parameters in the order they were defined
metadata = kernel_manager.kernel_metadata[kernel_name]
for param in metadata.get("parameters", []):
if param["name"] in parameters:
args.append(parameters[param["name"]])
# Execute with sampling
if args:
result = cudaq.sample(kernel, *args, shots_count=shots)
else:
result = cudaq.sample(kernel, shots_count=shots)
# Convert results to serializable format
counts = {}
for bitstring, count in result.items():
counts[str(bitstring)] = int(count)
return {
"success": True,
"counts": counts,
"shots": shots,
"most_probable": result.most_probable()
}
except Exception as e:
logger.error(f"Error sampling kernel {kernel_name}: {e}")
return {"error": str(e), "traceback": traceback.format_exc()}
def observe(self, kernel_name: str, hamiltonian_terms: List[Dict],
shots: int = 1000, parameters: Optional[Dict] = None) -> Dict:
"""Calculate expectation value of Hamiltonian"""
if kernel_name not in kernel_manager.kernels:
return {"error": f"Kernel {kernel_name} not found"}
try:
kernel = kernel_manager.kernels[kernel_name]
# Build Hamiltonian from terms
hamiltonian = 0.0
for term in hamiltonian_terms:
coeff = term.get("coefficient", 1.0)
pauli_string = term.get("pauli_string", "")
if pauli_string:
hamiltonian += coeff * spin.z(0) # Simplified - should parse pauli_string
# Prepare parameters
args = []
if parameters:
metadata = kernel_manager.kernel_metadata[kernel_name]
for param in metadata.get("parameters", []):
if param["name"] in parameters:
args.append(parameters[param["name"]])
# Calculate expectation value
if args:
expectation = cudaq.observe(kernel, hamiltonian, *args, shots_count=shots)
else:
expectation = cudaq.observe(kernel, hamiltonian, shots_count=shots)
return {
"success": True,
"expectation_value": float(expectation.expectation()),
"shots": shots
}
except Exception as e:
logger.error(f"Error observing kernel {kernel_name}: {e}")
return {"error": str(e), "traceback": traceback.format_exc()}
def get_state(self, kernel_name: str, parameters: Optional[Dict] = None) -> Dict:
"""Get quantum state vector"""
if kernel_name not in kernel_manager.kernels:
return {"error": f"Kernel {kernel_name} not found"}
try:
kernel = kernel_manager.kernels[kernel_name]
# Prepare parameters
args = []
if parameters:
metadata = kernel_manager.kernel_metadata[kernel_name]
for param in metadata.get("parameters", []):
if param["name"] in parameters:
args.append(parameters[param["name"]])
# Get state vector
if args:
state = cudaq.get_state(kernel, *args)
else:
state = cudaq.get_state(kernel)
# Convert to serializable format
state_vector = []
for amplitude in state:
state_vector.append({
"real": float(amplitude.real),
"imag": float(amplitude.imag)
})
return {
"success": True,
"state_vector": state_vector,
"num_qubits": len(state).bit_length() - 1
}
except Exception as e:
logger.error(f"Error getting state for kernel {kernel_name}: {e}")
return {"error": str(e), "traceback": traceback.format_exc()}
def get_available_targets(self) -> Dict:
"""Get list of available quantum targets"""
try:
targets = cudaq.get_targets()
return {"success": True, "targets": list(targets)}
except Exception as e:
logger.error(f"Error getting available targets: {e}")
return {"error": str(e), "traceback": traceback.format_exc()}
def get_target_info(self) -> Dict:
"""Get information about current target"""
try:
info = {
"current_target": self.current_target,
"available_targets": list(cudaq.get_targets())
}
return {"success": True, "info": info}
except Exception as e:
logger.error(f"Error getting target info: {e}")
return {"error": str(e), "traceback": traceback.format_exc()}
def get_available_targets_standalone() -> Dict:
"""Standalone function to get available targets"""
try:
targets = cudaq.get_targets()
return {"success": True, "targets": list(targets)}
except Exception as e:
logger.error(f"Error getting available targets: {e}")
return {"error": str(e), "traceback": traceback.format_exc()}
def get_target_info_standalone() -> Dict:
"""Standalone function to get target info"""
try:
targets = cudaq.get_targets()
return {"success": True, "available_targets": list(targets)}
except Exception as e:
logger.error(f"Error getting target info: {e}")
return {"error": str(e), "traceback": traceback.format_exc()}
def get_platform_info() -> Dict:
"""Get platform and hardware information"""
try:
info = {
"cuda_quantum_version": "0.8.0", # Would get from cudaq.__version__ if available
"available_targets": list(cudaq.get_targets()),
"python_version": sys.version,
"platform": sys.platform
}
return {"success": True, "platform_info": info}
except Exception as e:
logger.error(f"Error getting platform info: {e}")
return {"error": str(e), "traceback": traceback.format_exc()}
# Global instances
kernel_manager = QuantumKernelManager()
executor = QuantumExecutor()
def dispatch_command(command: str, **kwargs) -> Dict:
"""Main dispatch function for Python bridge commands"""
try:
if command == "create_kernel":
return kernel_manager.create_kernel(
kwargs["name"],
kwargs["num_qubits"],
kwargs.get("parameters")
)
elif command == "apply_gate":
return kernel_manager.apply_gate(
kwargs["kernel_name"],
kwargs["gate_name"],
kwargs["target_qubits"],
kwargs.get("control_qubits"),
kwargs.get("parameters"),
kwargs.get("adjoint", False)
)
elif command == "set_target":
target_name = kwargs.get("target")
if target_name is None:
return {"error": "Missing required parameter 'target'", "available_params": list(kwargs.keys())}
return executor.set_target(
target_name,
**kwargs.get("configuration", {})
)
elif command == "sample":
return executor.sample(
kwargs["kernel_name"],
kwargs.get("shots", 1000),
kwargs.get("parameters")
)
elif command == "observe":
return executor.observe(
kwargs["kernel_name"],
kwargs["hamiltonian_terms"],
kwargs.get("shots", 1000),
kwargs.get("parameters")
)
elif command == "get_state":
return executor.get_state(
kwargs["kernel_name"],
kwargs.get("parameters")
)
elif command == "get_available_targets":
return get_available_targets_standalone()
elif command == "get_target_info":
return get_target_info_standalone()
elif command == "list_kernels":
return {
"success": True,
"kernels": list(kernel_manager.kernels.keys()),
"metadata": kernel_manager.kernel_metadata
}
elif command == "get_platform_info":
return get_platform_info()
else:
return {"error": f"Unknown command: {command}"}
except Exception as e:
logger.error(f"Error executing command {command}: {e}")
return {"error": str(e), "traceback": traceback.format_exc()}
def main():
"""Main event loop for Python bridge"""
print("CUDA Quantum Python Bridge - Ready", flush=True)
for line in sys.stdin:
try:
request = json.loads(line.strip())
command = request.get("command")
data = request.get("data", {})
request_id = request.get("requestId", "")
if command:
result = dispatch_command(command, **data)
response = {
"success": True,
"data": result,
"requestId": request_id
}
else:
response = {
"success": False,
"error": "No command specified",
"requestId": request_id
}
print(json.dumps(response), flush=True)
except Exception as e:
error_response = {
"success": False,
"error": str(e),
"traceback": traceback.format_exc(),
"requestId": request.get("requestId", "") if 'request' in locals() else ""
}
print(json.dumps(error_response), flush=True)
if __name__ == "__main__":
main()