""" CUDA Quantum Python Bridge - Production Version Provides a unified interface for Node.js to interact with CUDA Quantum functionality """ import json import sys import traceback import numpy as np from typing import Dict, List, Any, Optional, Union, Tuple import logging # Setup logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) try: import cudaq from cudaq import spin CUDAQ_AVAILABLE = True print("INFO - CUDA Quantum successfully imported", flush=True) except ImportError as e: CUDAQ_AVAILABLE = False print(f"WARNING - CUDA Quantum not available: {e}", flush=True) print("WARNING - Running in development mode without CUDA Quantum", flush=True) # Create mock cudaq module for development class MockCudaq: @staticmethod def kernel(func): return func @staticmethod def get_targets(): return ['mock-cpu', 'mock-gpu'] @staticmethod def set_target(target, **kwargs): pass @staticmethod def sample(kernel, *args, **kwargs): # Mock sampling results return {'00': 500, '11': 500} @staticmethod def observe(kernel, hamiltonian, *args, **kwargs): # Mock observation result class MockResult: def expectation(self): return 0.0 return MockResult() @staticmethod def get_state(kernel, *args): # Mock state vector return [1.0+0j, 0.0+0j] @staticmethod def qview(): pass class MockSpin: @staticmethod def z(index): return f"Z{index}" cudaq = MockCudaq() spin = MockSpin() class QuantumKernelManager: """Manages quantum kernels and their execution""" def __init__(self): self.kernels: Dict[str, Any] = {} self.kernel_metadata: Dict[str, Dict] = {} def create_kernel(self, name: str, num_qubits: int, parameters: Optional[List[Dict]] = None) -> Dict: """Create a new quantum kernel""" if not CUDAQ_AVAILABLE: # Mock mode - store kernel metadata self.kernel_metadata[name] = { "num_qubits": num_qubits, "parameters": parameters or [], "operations": [] } return {"success": True, "kernel_name": name, "mode": "mock"} try: # Create kernel dynamically kernel_code = self._generate_kernel_code(name, num_qubits, parameters or []) exec(kernel_code, globals()) self.kernels[name] = globals()[name] self.kernel_metadata[name] = { "num_qubits": num_qubits, "parameters": parameters or [], "operations": [] } return {"success": True, "kernel_name": name} except Exception as e: logger.error(f"Error creating kernel {name}: {e}") return {"error": str(e), "traceback": traceback.format_exc()} def _generate_kernel_code(self, name: str, num_qubits: int, parameters: List[Dict]) -> str: """Generate CUDA Quantum kernel code dynamically""" param_str = "" if parameters: param_types = { "float": "float", "int": "int", "complex": "complex", "angle": "float" } params = [] for param in parameters: param_type = param_types.get(param.get("type", "float"), "float") params.append(f"{param['name']}: {param_type}") param_str = ", " + ", ".join(params) kernel_code = f""" @cudaq.kernel def {name}(qubits: cudaq.qview{param_str}): pass """ return kernel_code def apply_gate(self, kernel_name: str, gate_name: str, target_qubits: List[int], control_qubits: Optional[List[int]] = None, parameters: Optional[List[float]] = None, adjoint: bool = False) -> Dict: """Apply a quantum gate to a kernel""" if kernel_name not in self.kernel_metadata: return {"error": f"Kernel {kernel_name} not found"} try: operation = { "gate": gate_name, "targets": target_qubits, "controls": control_qubits or [], "parameters": parameters or [], "adjoint": adjoint } self.kernel_metadata[kernel_name]["operations"].append(operation) return {"success": True, "operation": operation} except Exception as e: logger.error(f"Error applying gate {gate_name} to kernel {kernel_name}: {e}") return {"error": str(e), "traceback": traceback.format_exc()} class QuantumExecutor: """Handles quantum circuit execution and measurement""" def __init__(self): self.current_target = None def set_target(self, target_name: str, **kwargs) -> Dict: """Set the quantum computing target/backend""" if not CUDAQ_AVAILABLE: return {"success": True, "target": target_name, "mode": "mock"} try: # Get available targets first available_targets = cudaq.get_targets() available_target_names = [str(target) if hasattr(target, '__str__') else repr(target) for target in available_targets] # Validate target exists if target_name not in available_target_names: # Try common fallbacks fallback_targets = ['qpp-cpu', 'density-matrix-cpu', 'default'] for fallback in fallback_targets: if fallback in available_target_names: print(f"WARNING - Target {target_name} not available, using {fallback}", flush=True) cudaq.set_target(fallback, **kwargs) self.current_target = fallback return {"success": True, "target": fallback, "fallback": True} return {"error": f"Invalid target name ({target_name})", "available_targets": available_target_names} # Set the target cudaq.set_target(target_name, **kwargs) self.current_target = target_name return {"success": True, "target": target_name} except Exception as e: try: cudaq.reset_target() except: pass logger.error(f"Error setting target {target_name}: {e}") return {"error": str(e), "traceback": traceback.format_exc()} def sample(self, kernel_name: str, shots: int = 1000, parameters: Optional[Dict] = None) -> Dict: """Execute quantum circuit and sample measurement results""" if not CUDAQ_AVAILABLE: # Mock sampling results return { "success": True, "counts": {"00": shots//2, "11": shots//2}, "shots": shots, "most_probable": "00", "mode": "mock" } if kernel_name not in kernel_manager.kernels: return {"error": f"Kernel {kernel_name} not found"} try: kernel = kernel_manager.kernels[kernel_name] # Prepare parameters args = [] if parameters: # Add parameters in the order they were defined metadata = kernel_manager.kernel_metadata[kernel_name] for param in metadata.get("parameters", []): if param["name"] in parameters: args.append(parameters[param["name"]]) # Execute with sampling if args: result = cudaq.sample(kernel, *args, shots_count=shots) else: result = cudaq.sample(kernel, shots_count=shots) # Convert results to serializable format counts = {} for bitstring, count in result.items(): counts[str(bitstring)] = int(count) return { "success": True, "counts": counts, "shots": shots, "most_probable": result.most_probable() } except Exception as e: logger.error(f"Error sampling kernel {kernel_name}: {e}") return {"error": str(e), "traceback": traceback.format_exc()} def observe(self, kernel_name: str, hamiltonian_terms: List[Dict], shots: int = 1000, parameters: Optional[Dict] = None) -> Dict: """Calculate expectation value of Hamiltonian""" if not CUDAQ_AVAILABLE: # Mock observation result return { "success": True, "expectation_value": 0.0, "shots": shots, "mode": "mock" } if kernel_name not in kernel_manager.kernels: return {"error": f"Kernel {kernel_name} not found"} try: kernel = kernel_manager.kernels[kernel_name] # Build Hamiltonian from terms hamiltonian = 0.0 for term in hamiltonian_terms: coeff = term.get("coefficient", 1.0) pauli_string = term.get("pauli_string", "") if pauli_string: hamiltonian += coeff * spin.z(0) # Simplified - should parse pauli_string # Prepare parameters args = [] if parameters: metadata = kernel_manager.kernel_metadata[kernel_name] for param in metadata.get("parameters", []): if param["name"] in parameters: args.append(parameters[param["name"]]) # Calculate expectation value if args: expectation = cudaq.observe(kernel, hamiltonian, *args, shots_count=shots) else: expectation = cudaq.observe(kernel, hamiltonian, shots_count=shots) return { "success": True, "expectation_value": float(expectation.expectation()), "shots": shots } except Exception as e: logger.error(f"Error observing kernel {kernel_name}: {e}") return {"error": str(e), "traceback": traceback.format_exc()} def get_state(self, kernel_name: str, parameters: Optional[Dict] = None) -> Dict: """Get quantum state vector""" if not CUDAQ_AVAILABLE: # Mock state vector return { "success": True, "state_vector": [ {"real": 1.0, "imag": 0.0}, {"real": 0.0, "imag": 0.0} ], "num_qubits": 1, "mode": "mock" } if kernel_name not in kernel_manager.kernels: return {"error": f"Kernel {kernel_name} not found"} try: kernel = kernel_manager.kernels[kernel_name] # Prepare parameters args = [] if parameters: metadata = kernel_manager.kernel_metadata[kernel_name] for param in metadata.get("parameters", []): if param["name"] in parameters: args.append(parameters[param["name"]]) # Get state vector if args: state = cudaq.get_state(kernel, *args) else: state = cudaq.get_state(kernel) # Convert to serializable format state_vector = [] for amplitude in state: state_vector.append({ "real": float(amplitude.real), "imag": float(amplitude.imag) }) return { "success": True, "state_vector": state_vector, "num_qubits": len(state).bit_length() - 1 } except Exception as e: logger.error(f"Error getting state for kernel {kernel_name}: {e}") return {"error": str(e), "traceback": traceback.format_exc()} def get_available_targets(self) -> Dict: """Get list of available quantum targets""" try: targets = cudaq.get_targets() return {"success": True, "targets": list(targets)} except Exception as e: logger.error(f"Error getting available targets: {e}") return {"error": str(e), "traceback": traceback.format_exc()} def get_target_info(self) -> Dict: """Get information about current target""" try: info = { "current_target": self.current_target, "available_targets": list(cudaq.get_targets()) } return {"success": True, "info": info} except Exception as e: logger.error(f"Error getting target info: {e}") return {"error": str(e), "traceback": traceback.format_exc()} def get_available_targets_standalone() -> Dict: """Standalone function to get available targets""" if not CUDAQ_AVAILABLE: return { "success": True, "targets": ["mock-cpu", "mock-gpu"], "mode": "mock" } try: targets = cudaq.get_targets() # Convert Target objects to strings for JSON serialization target_names = [str(target) if hasattr(target, '__str__') else repr(target) for target in targets] return {"success": True, "targets": target_names} except Exception as e: logger.error(f"Error getting available targets: {e}") return {"error": str(e), "traceback": traceback.format_exc()} def get_target_info_standalone() -> Dict: """Standalone function to get target info""" if not CUDAQ_AVAILABLE: return { "success": True, "available_targets": ["mock-cpu", "mock-gpu"], "mode": "mock" } try: targets = cudaq.get_targets() # Convert Target objects to strings for JSON serialization target_names = [str(target) if hasattr(target, '__str__') else repr(target) for target in targets] return {"success": True, "available_targets": target_names} except Exception as e: logger.error(f"Error getting target info: {e}") return {"error": str(e), "traceback": traceback.format_exc()} def get_platform_info() -> Dict: """Get platform and hardware information""" if not CUDAQ_AVAILABLE: info = { "cuda_quantum_version": "mock-0.8.0", "available_targets": ["mock-cpu", "mock-gpu"], "python_version": sys.version, "platform": sys.platform, "mode": "mock" } return {"success": True, "platform_info": info} try: targets = cudaq.get_targets() # Convert Target objects to strings for JSON serialization target_names = [str(target) if hasattr(target, '__str__') else repr(target) for target in targets] info = { "cuda_quantum_version": getattr(cudaq, '__version__', '0.8.0'), "available_targets": target_names, "python_version": sys.version, "platform": sys.platform } return {"success": True, "platform_info": info} except Exception as e: logger.error(f"Error getting platform info: {e}") return {"error": str(e), "traceback": traceback.format_exc()} # Global instances kernel_manager = QuantumKernelManager() executor = QuantumExecutor() def dispatch_command(command: str, **kwargs) -> Dict: """Main dispatch function for Python bridge commands""" try: if command == "create_kernel": return kernel_manager.create_kernel( kwargs["name"], kwargs["num_qubits"], kwargs.get("parameters") ) elif command == "apply_gate": return kernel_manager.apply_gate( kwargs["kernel_name"], kwargs["gate_name"], kwargs["target_qubits"], kwargs.get("control_qubits"), kwargs.get("parameters"), kwargs.get("adjoint", False) ) elif command == "set_target": target_name = kwargs.get("target") if target_name is None: return {"error": "Missing required parameter 'target'", "available_params": list(kwargs.keys())} return executor.set_target( target_name, **kwargs.get("configuration", {}) ) elif command == "sample": return executor.sample( kwargs["kernel_name"], kwargs.get("shots", 1000), kwargs.get("parameters") ) elif command == "observe": return executor.observe( kwargs["kernel_name"], kwargs["hamiltonian_terms"], kwargs.get("shots", 1000), kwargs.get("parameters") ) elif command == "get_state": return executor.get_state( kwargs["kernel_name"], kwargs.get("parameters") ) elif command == "get_available_targets": return get_available_targets_standalone() elif command == "get_target_info": return get_target_info_standalone() elif command == "list_kernels": return { "success": True, "kernels": list(kernel_manager.kernels.keys()), "metadata": kernel_manager.kernel_metadata } elif command == "get_platform_info": return get_platform_info() else: return {"error": f"Unknown command: {command}"} except Exception as e: logger.error(f"Error executing command {command}: {e}") return {"error": str(e), "traceback": traceback.format_exc()} def main(): """Main event loop for Python bridge""" print("CUDA Quantum Python Bridge - Ready", flush=True) for line in sys.stdin: try: line = line.strip() if not line: continue request = json.loads(line) command = request.get("command") data = request.get("data", {}) request_id = request.get("requestId", "") # Debug logging print(f"DEBUG - Processing command: {command} with ID: {request_id}", file=sys.stderr, flush=True) if command: result = dispatch_command(command, **data) # Check if the result already has success/error structure if isinstance(result, dict) and ("success" in result or "error" in result): # Result already has proper structure, just add request ID response = {**result, "requestId": request_id} else: # Wrap result in standard response structure response = { "success": True, "data": result, "requestId": request_id } print(f"DEBUG - Command {command} completed successfully", file=sys.stderr, flush=True) else: response = { "success": False, "error": "No command specified", "requestId": request_id } # Ensure response is sent on a single line with explicit flush output = json.dumps(response) print(output, flush=True) sys.stdout.flush() # Extra flush to ensure it's sent except Exception as e: print(f"ERROR - Exception in main loop: {str(e)}", file=sys.stderr, flush=True) print(f"ERROR - Traceback: {traceback.format_exc()}", file=sys.stderr, flush=True) error_response = { "success": False, "error": str(e), "traceback": traceback.format_exc(), "requestId": request.get("requestId", "") if 'request' in locals() else "" } output = json.dumps(error_response) print(output, flush=True) sys.stdout.flush() # Extra flush to ensure it's sent if __name__ == "__main__": main()