483
python/cudaq_bridge.py
Archivo normal
483
python/cudaq_bridge.py
Archivo normal
@@ -0,0 +1,483 @@
|
||||
"""
|
||||
CUDA Quantum Python Bridge
|
||||
Provides a unified interface for Node.js to interact with CUDA Quantum functionality
|
||||
"""
|
||||
|
||||
import json
|
||||
import sys
|
||||
import traceback
|
||||
import numpy as np
|
||||
from typing import Dict, List, Any, Optional, Union, Tuple
|
||||
import logging
|
||||
|
||||
# Setup logging
|
||||
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
try:
|
||||
import cudaq
|
||||
from cudaq import spin
|
||||
CUDAQ_AVAILABLE = True
|
||||
logger.info("CUDA Quantum successfully imported")
|
||||
except ImportError as e:
|
||||
CUDAQ_AVAILABLE = False
|
||||
logger.error(f"CUDA Quantum not available: {e}")
|
||||
logger.error("Please install CUDA Quantum: pip install cudaq")
|
||||
|
||||
|
||||
class QuantumKernelManager:
|
||||
"""Manages quantum kernels and their execution"""
|
||||
|
||||
def __init__(self):
|
||||
self.kernels: Dict[str, Any] = {}
|
||||
self.kernel_metadata: Dict[str, Dict] = {}
|
||||
|
||||
def create_kernel(self, name: str, num_qubits: int, parameters: Optional[List[Dict]] = None) -> Dict:
|
||||
"""Create a new quantum kernel"""
|
||||
if not CUDAQ_AVAILABLE:
|
||||
return {"error": "CUDA Quantum not available"}
|
||||
|
||||
try:
|
||||
# Create kernel dynamically
|
||||
kernel_code = self._generate_kernel_code(name, num_qubits, parameters or [])
|
||||
exec(kernel_code, globals())
|
||||
|
||||
self.kernels[name] = globals()[name]
|
||||
self.kernel_metadata[name] = {
|
||||
"num_qubits": num_qubits,
|
||||
"parameters": parameters or [],
|
||||
"operations": []
|
||||
}
|
||||
|
||||
return {"success": True, "kernel_name": name}
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error creating kernel {name}: {e}")
|
||||
return {"error": str(e), "traceback": traceback.format_exc()}
|
||||
|
||||
def _generate_kernel_code(self, name: str, num_qubits: int, parameters: List[Dict]) -> str:
|
||||
"""Generate CUDA Quantum kernel code dynamically"""
|
||||
param_str = ""
|
||||
if parameters:
|
||||
param_types = {
|
||||
"int": "int",
|
||||
"float": "float",
|
||||
"complex": "complex",
|
||||
"list[int]": "list[int]",
|
||||
"list[float]": "list[float]",
|
||||
"list[complex]": "list[complex]"
|
||||
}
|
||||
param_list = []
|
||||
for p in parameters:
|
||||
param_list.append(f"{p['name']}: {param_types.get(p['type'], 'float')}")
|
||||
param_str = ", " + ", ".join(param_list)
|
||||
|
||||
code = f'''
|
||||
@cudaq.kernel
|
||||
def {name}({param_str.lstrip(', ')}):
|
||||
"""Dynamically generated quantum kernel"""
|
||||
qubits = cudaq.qvector({num_qubits})
|
||||
# Placeholder - operations will be added dynamically
|
||||
pass
|
||||
'''
|
||||
return code
|
||||
|
||||
def apply_gate(self, kernel_name: str, gate_name: str, qubits: List[int],
|
||||
parameters: Optional[List[float]] = None,
|
||||
controls: Optional[List[int]] = None,
|
||||
adjoint: bool = False) -> Dict:
|
||||
"""Apply a quantum gate to a kernel"""
|
||||
if not CUDAQ_AVAILABLE:
|
||||
return {"error": "CUDA Quantum not available"}
|
||||
|
||||
if kernel_name not in self.kernel_metadata:
|
||||
return {"error": f"Kernel {kernel_name} not found"}
|
||||
|
||||
try:
|
||||
operation = {
|
||||
"gate": gate_name,
|
||||
"qubits": qubits,
|
||||
"parameters": parameters,
|
||||
"controls": controls,
|
||||
"adjoint": adjoint
|
||||
}
|
||||
self.kernel_metadata[kernel_name]["operations"].append(operation)
|
||||
|
||||
# Rebuild kernel with new operations
|
||||
self._rebuild_kernel(kernel_name)
|
||||
|
||||
return {"success": True}
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error applying gate {gate_name} to {kernel_name}: {e}")
|
||||
return {"error": str(e), "traceback": traceback.format_exc()}
|
||||
|
||||
def _rebuild_kernel(self, kernel_name: str):
|
||||
"""Rebuild kernel with accumulated operations"""
|
||||
metadata = self.kernel_metadata[kernel_name]
|
||||
num_qubits = metadata["num_qubits"]
|
||||
parameters = metadata["parameters"]
|
||||
operations = metadata["operations"]
|
||||
|
||||
# Generate parameter string
|
||||
param_str = ""
|
||||
if parameters:
|
||||
param_types = {
|
||||
"int": "int", "float": "float", "complex": "complex",
|
||||
"list[int]": "list[int]", "list[float]": "list[float]",
|
||||
"list[complex]": "list[complex]"
|
||||
}
|
||||
param_list = []
|
||||
for p in parameters:
|
||||
param_list.append(f"{p['name']}: {param_types.get(p['type'], 'float')}")
|
||||
param_str = ", " + ", ".join(param_list)
|
||||
|
||||
# Generate operations code
|
||||
ops_code = []
|
||||
for op in operations:
|
||||
gate_code = self._generate_gate_code(op)
|
||||
if gate_code:
|
||||
ops_code.append(f" {gate_code}")
|
||||
|
||||
code = f'''
|
||||
@cudaq.kernel
|
||||
def {kernel_name}({param_str.lstrip(', ')}):
|
||||
"""Dynamically generated quantum kernel with operations"""
|
||||
qubits = cudaq.qvector({num_qubits})
|
||||
{chr(10).join(ops_code) if ops_code else " pass"}
|
||||
'''
|
||||
|
||||
# Execute and register new kernel
|
||||
exec(code, globals())
|
||||
self.kernels[kernel_name] = globals()[kernel_name]
|
||||
|
||||
def _generate_gate_code(self, operation: Dict) -> str:
|
||||
"""Generate code for a single gate operation"""
|
||||
gate = operation["gate"]
|
||||
qubits = operation["qubits"]
|
||||
parameters = operation.get("parameters", [])
|
||||
controls = operation.get("controls", [])
|
||||
adjoint = operation.get("adjoint", False)
|
||||
|
||||
if len(qubits) == 1:
|
||||
target = f"qubits[{qubits[0]}]"
|
||||
else:
|
||||
target = f"[{', '.join([f'qubits[{q}]' for q in qubits])}]"
|
||||
|
||||
# Handle parameterized gates
|
||||
if parameters:
|
||||
if len(parameters) == 1:
|
||||
gate_call = f"{gate}({parameters[0]}, {target})"
|
||||
else:
|
||||
params_str = ", ".join(map(str, parameters))
|
||||
gate_call = f"{gate}({params_str}, {target})"
|
||||
else:
|
||||
gate_call = f"{gate}({target})"
|
||||
|
||||
# Handle controlled gates
|
||||
if controls:
|
||||
if len(controls) == 1:
|
||||
gate_call = f"{gate}.ctrl(qubits[{controls[0]}], {target})"
|
||||
else:
|
||||
ctrl_str = "[" + ", ".join([f"qubits[{c}]" for c in controls]) + "]"
|
||||
gate_call = f"{gate}.ctrl({ctrl_str}, {target})"
|
||||
|
||||
# Handle adjoint
|
||||
if adjoint:
|
||||
gate_call = gate_call.replace(gate, f"{gate}.adj")
|
||||
|
||||
return gate_call
|
||||
|
||||
|
||||
class QuantumExecutor:
|
||||
"""Handles execution of quantum kernels"""
|
||||
|
||||
def __init__(self, kernel_manager: QuantumKernelManager):
|
||||
self.kernel_manager = kernel_manager
|
||||
|
||||
def set_target(self, target: str, configuration: Optional[Dict] = None) -> Dict:
|
||||
"""Set quantum execution target"""
|
||||
if not CUDAQ_AVAILABLE:
|
||||
return {"error": "CUDA Quantum not available"}
|
||||
|
||||
try:
|
||||
if configuration:
|
||||
cudaq.set_target(target, **configuration)
|
||||
else:
|
||||
cudaq.set_target(target)
|
||||
|
||||
return {"success": True, "target": target}
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error setting target {target}: {e}")
|
||||
return {"error": str(e), "traceback": traceback.format_exc()}
|
||||
|
||||
def sample(self, kernel_name: str, shots: int = 1000,
|
||||
parameters: Optional[Dict] = None) -> Dict:
|
||||
"""Sample measurement results from quantum kernel"""
|
||||
if not CUDAQ_AVAILABLE:
|
||||
return {"error": "CUDA Quantum not available"}
|
||||
|
||||
if kernel_name not in self.kernel_manager.kernels:
|
||||
return {"error": f"Kernel {kernel_name} not found"}
|
||||
|
||||
try:
|
||||
kernel = self.kernel_manager.kernels[kernel_name]
|
||||
|
||||
if parameters:
|
||||
# Call with parameters
|
||||
args = [parameters[p["name"]] for p in
|
||||
self.kernel_manager.kernel_metadata[kernel_name]["parameters"]]
|
||||
result = cudaq.sample(kernel, *args, shots_count=shots)
|
||||
else:
|
||||
result = cudaq.sample(kernel, shots_count=shots)
|
||||
|
||||
# Convert result to serializable format
|
||||
counts = {}
|
||||
for bits, count in result.items():
|
||||
counts[str(bits)] = count
|
||||
|
||||
return {
|
||||
"success": True,
|
||||
"counts": counts,
|
||||
"shots": shots,
|
||||
"total_counts": sum(counts.values())
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error sampling kernel {kernel_name}: {e}")
|
||||
return {"error": str(e), "traceback": traceback.format_exc()}
|
||||
|
||||
def observe(self, kernel_name: str, hamiltonian_terms: List[Dict],
|
||||
shots: int = 1000, parameters: Optional[Dict] = None) -> Dict:
|
||||
"""Compute expectation value of Hamiltonian"""
|
||||
if not CUDAQ_AVAILABLE:
|
||||
return {"error": "CUDA Quantum not available"}
|
||||
|
||||
if kernel_name not in self.kernel_manager.kernels:
|
||||
return {"error": f"Kernel {kernel_name} not found"}
|
||||
|
||||
try:
|
||||
kernel = self.kernel_manager.kernels[kernel_name]
|
||||
|
||||
# Build Hamiltonian from terms
|
||||
hamiltonian = self._build_hamiltonian(hamiltonian_terms)
|
||||
|
||||
if parameters:
|
||||
args = [parameters[p["name"]] for p in
|
||||
self.kernel_manager.kernel_metadata[kernel_name]["parameters"]]
|
||||
result = cudaq.observe(kernel, hamiltonian, *args, shots_count=shots)
|
||||
else:
|
||||
result = cudaq.observe(kernel, hamiltonian, shots_count=shots)
|
||||
|
||||
return {
|
||||
"success": True,
|
||||
"expectation": result.expectation(),
|
||||
"variance": result.variance() if hasattr(result, 'variance') else None,
|
||||
"shots": shots
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error observing kernel {kernel_name}: {e}")
|
||||
return {"error": str(e), "traceback": traceback.format_exc()}
|
||||
|
||||
def get_state(self, kernel_name: str, parameters: Optional[Dict] = None) -> Dict:
|
||||
"""Get quantum state vector"""
|
||||
if not CUDAQ_AVAILABLE:
|
||||
return {"error": "CUDA Quantum not available"}
|
||||
|
||||
if kernel_name not in self.kernel_manager.kernels:
|
||||
return {"error": f"Kernel {kernel_name} not found"}
|
||||
|
||||
try:
|
||||
kernel = self.kernel_manager.kernels[kernel_name]
|
||||
|
||||
if parameters:
|
||||
args = [parameters[p["name"]] for p in
|
||||
self.kernel_manager.kernel_metadata[kernel_name]["parameters"]]
|
||||
state = cudaq.get_state(kernel, *args)
|
||||
else:
|
||||
state = cudaq.get_state(kernel)
|
||||
|
||||
# Convert state to serializable format
|
||||
state_array = np.array(state)
|
||||
state_list = []
|
||||
for amplitude in state_array:
|
||||
state_list.append({
|
||||
"real": float(amplitude.real),
|
||||
"imag": float(amplitude.imag)
|
||||
})
|
||||
|
||||
return {
|
||||
"success": True,
|
||||
"state": state_list,
|
||||
"dimension": len(state_list)
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting state for kernel {kernel_name}: {e}")
|
||||
return {"error": str(e), "traceback": traceback.format_exc()}
|
||||
|
||||
def _build_hamiltonian(self, terms: List[Dict]):
|
||||
"""Build CUDA Quantum Hamiltonian from term list"""
|
||||
h = None
|
||||
|
||||
for term in terms:
|
||||
paulis = term["paulis"]
|
||||
qubits = term["qubits"]
|
||||
coeff_real = term["coefficient"]["real"]
|
||||
coeff_imag = term["coefficient"]["imag"]
|
||||
|
||||
# Build Pauli string
|
||||
pauli_term = None
|
||||
for i, (pauli, qubit) in enumerate(zip(paulis, qubits)):
|
||||
if pauli == 'I':
|
||||
continue
|
||||
elif pauli == 'X':
|
||||
p = spin.x(qubit)
|
||||
elif pauli == 'Y':
|
||||
p = spin.y(qubit)
|
||||
elif pauli == 'Z':
|
||||
p = spin.z(qubit)
|
||||
else:
|
||||
raise ValueError(f"Invalid Pauli operator: {pauli}")
|
||||
|
||||
if pauli_term is None:
|
||||
pauli_term = p
|
||||
else:
|
||||
pauli_term = pauli_term * p
|
||||
|
||||
if pauli_term is not None:
|
||||
# Apply coefficient
|
||||
if coeff_imag != 0:
|
||||
coeff = complex(coeff_real, coeff_imag)
|
||||
else:
|
||||
coeff = coeff_real
|
||||
|
||||
term_contribution = coeff * pauli_term
|
||||
|
||||
if h is None:
|
||||
h = term_contribution
|
||||
else:
|
||||
h = h + term_contribution
|
||||
|
||||
return h if h is not None else 0.0 * spin.i(0)
|
||||
|
||||
|
||||
# Global instances
|
||||
kernel_manager = QuantumKernelManager()
|
||||
executor = QuantumExecutor(kernel_manager)
|
||||
|
||||
|
||||
def dispatch_command(command: str, **kwargs) -> Dict:
|
||||
"""Main dispatch function for Python bridge commands"""
|
||||
try:
|
||||
if command == "create_kernel":
|
||||
return kernel_manager.create_kernel(
|
||||
kwargs["name"],
|
||||
kwargs["num_qubits"],
|
||||
kwargs.get("parameters")
|
||||
)
|
||||
|
||||
elif command == "apply_gate":
|
||||
return kernel_manager.apply_gate(
|
||||
kwargs["kernel_name"],
|
||||
kwargs["gate_name"],
|
||||
kwargs["qubits"],
|
||||
kwargs.get("parameters"),
|
||||
kwargs.get("controls"),
|
||||
kwargs.get("adjoint", False)
|
||||
)
|
||||
|
||||
elif command == "set_target":
|
||||
return executor.set_target(
|
||||
kwargs["target"],
|
||||
kwargs.get("configuration")
|
||||
)
|
||||
|
||||
elif command == "sample":
|
||||
return executor.sample(
|
||||
kwargs["kernel_name"],
|
||||
kwargs.get("shots", 1000),
|
||||
kwargs.get("parameters")
|
||||
)
|
||||
|
||||
elif command == "observe":
|
||||
return executor.observe(
|
||||
kwargs["kernel_name"],
|
||||
kwargs["hamiltonian_terms"],
|
||||
kwargs.get("shots", 1000),
|
||||
kwargs.get("parameters")
|
||||
)
|
||||
|
||||
elif command == "get_state":
|
||||
return executor.get_state(
|
||||
kwargs["kernel_name"],
|
||||
kwargs.get("parameters")
|
||||
)
|
||||
|
||||
elif command == "list_kernels":
|
||||
return {
|
||||
"success": True,
|
||||
"kernels": list(kernel_manager.kernels.keys()),
|
||||
"metadata": kernel_manager.kernel_metadata
|
||||
}
|
||||
|
||||
elif command == "get_platform_info":
|
||||
if not CUDAQ_AVAILABLE:
|
||||
return {"error": "CUDA Quantum not available"}
|
||||
|
||||
try:
|
||||
platform = cudaq.get_platform()
|
||||
return {
|
||||
"success": True,
|
||||
"platform_name": platform.name(),
|
||||
"num_qpus": platform.num_qpus(),
|
||||
"is_simulator": platform.is_simulator(),
|
||||
"is_remote": platform.is_remote()
|
||||
}
|
||||
except:
|
||||
return {"success": True, "platform_name": "default"}
|
||||
|
||||
else:
|
||||
return {"error": f"Unknown command: {command}"}
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error executing command {command}: {e}")
|
||||
return {"error": str(e), "traceback": traceback.format_exc()}
|
||||
|
||||
|
||||
def main():
|
||||
"""Main entry point for standalone execution"""
|
||||
if len(sys.argv) > 1:
|
||||
# Command line mode
|
||||
command_json = sys.argv[1]
|
||||
try:
|
||||
command_data = json.loads(command_json)
|
||||
result = dispatch_command(**command_data)
|
||||
print(json.dumps(result))
|
||||
except Exception as e:
|
||||
print(json.dumps({"error": str(e), "traceback": traceback.format_exc()}))
|
||||
else:
|
||||
# Interactive mode
|
||||
print("CUDA Quantum Python Bridge - Interactive Mode")
|
||||
print("Available commands: create_kernel, apply_gate, set_target, sample, observe, get_state")
|
||||
|
||||
while True:
|
||||
try:
|
||||
command_line = input("> ")
|
||||
if command_line.lower() in ["quit", "exit"]:
|
||||
break
|
||||
|
||||
command_data = json.loads(command_line)
|
||||
result = dispatch_command(**command_data)
|
||||
print(json.dumps(result, indent=2))
|
||||
|
||||
except KeyboardInterrupt:
|
||||
break
|
||||
except Exception as e:
|
||||
print(json.dumps({"error": str(e)}))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Referencia en una nueva incidencia
Block a user