initial commit
This commit is contained in:
commit
bd7e639d4e
114
Dockerfile
Normal file
114
Dockerfile
Normal file
@ -0,0 +1,114 @@
|
||||
# syntax = docker/dockerfile:1.0-experimental
|
||||
# https://docs.docker.com/develop/develop-images/build_enhancements/#overriding-default-frontends
|
||||
|
||||
|
||||
# xxx move from cudagl to cuda, for runtime?
|
||||
ARG CUDA_DEVEL="11.0.3-devel-ubuntu20.04"
|
||||
ARG CUDA_RUNTIME="11.0.3-runtime-ubuntu20.04"
|
||||
|
||||
# runtime starts as 2.3GB image
|
||||
# devel is runtime+ and is 4.2GB image
|
||||
FROM nvidia/cuda:$CUDA_DEVEL AS builder
|
||||
|
||||
|
||||
# v7.5 == Turing
|
||||
# v6.1 == Pascal
|
||||
ARG CUDA_ARCH_75=75
|
||||
ARG CUDA_ARCH_61=61
|
||||
|
||||
ARG FFMPEG_TGZ=https://ffmpeg.org/releases/ffmpeg-5.0.tar.gz
|
||||
|
||||
|
||||
# create an ffmpeg (w/ shared libs) that can utilize nvidia GPU
|
||||
WORKDIR /tmp
|
||||
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
RUN apt-get -yqq update && apt-get -yqq install \
|
||||
# get ffmpeg wanted typicals:
|
||||
autoconf automake build-essential cmake git-core wget \
|
||||
pkg-config texinfo wget yasm sudo \
|
||||
libass-dev libfreetype6-dev libgnutls28-dev libsdl2-dev libtool libva-dev libvdpau-dev \
|
||||
libvorbis-dev libxcb1-dev libxcb-shm0-dev libxcb-xfixes0-dev meson ninja-build \
|
||||
zlib1g-dev \
|
||||
\
|
||||
# needed to make archive.org mp4 derivatives:
|
||||
libx264-dev libfdk-aac-dev \
|
||||
# needed for https:// source urls:
|
||||
openssl libssl-dev \
|
||||
# these allow us to make any rarely encoded source file decoding avail:
|
||||
libx265-dev libvpx-dev libopus-dev
|
||||
|
||||
|
||||
# install nvidia headers (got moved out of ffmpeg)
|
||||
RUN git clone https://git.videolan.org/git/ffmpeg/nv-codec-headers && \
|
||||
cd nv-codec-headers && git checkout origin/sdk/11.0 && \
|
||||
sudo make install && \
|
||||
cd ..
|
||||
|
||||
|
||||
# build ffmpeg from source, so we can add in all the nvidia/cuda options
|
||||
RUN wget -qO- ${FFMPEG_TGZ} | tar xzf - && mv $(basename ${FFMPEG_TGZ} .tar.gz) ffmpeg
|
||||
WORKDIR /tmp/ffmpeg
|
||||
|
||||
# Compile ffmpeg twice - same stanzas just `$CUDA_ARCH_..` and final `cp` differ
|
||||
|
||||
# patch `configure` since Tesla T4 is on Turing architecture GPU (o/w --enable-libnpp fails)
|
||||
# https://en.wikipedia.org/wiki/CUDA#GPUs_supported
|
||||
# https://github.com/NVIDIA/cuda-samples/issues/46
|
||||
RUN sed -i -e "s/gencode arch=compute_..,code=sm_../gencode arch=compute_${CUDA_ARCH_75},code=sm_${CUDA_ARCH_75}/" ./configure\
|
||||
&& make distclean || echo && \
|
||||
./configure --enable-nonfree --enable-gpl \
|
||||
--enable-libfdk-aac \
|
||||
--enable-libfreetype \
|
||||
--enable-libopus \
|
||||
--enable-libvpx \
|
||||
--enable-libx264 \
|
||||
--enable-libx265 \
|
||||
--enable-openssl \
|
||||
# --enable-libvorbis # xxxx
|
||||
--enable-cuda --enable-cuda-sdk --enable-cuda-nvcc --enable-nvenc --enable-cuvid --enable-libnpp \
|
||||
--extra-cflags=-I/usr/local/cuda/include --extra-ldflags=-L/usr/local/cuda/lib64 && \
|
||||
make -j4 && \
|
||||
cp ffmpeg /tmp/ffmpeg-turing
|
||||
|
||||
RUN sed -i -e "s/gencode arch=compute_..,code=sm_../gencode arch=compute_${CUDA_ARCH_61},code=sm_${CUDA_ARCH_61}/" ./configure\
|
||||
&& make distclean || echo && \
|
||||
./configure --enable-nonfree --enable-gpl \
|
||||
--enable-libfdk-aac \
|
||||
--enable-libfreetype \
|
||||
--enable-libopus \
|
||||
--enable-libvpx \
|
||||
--enable-libx264 \
|
||||
--enable-libx265 \
|
||||
--enable-openssl \
|
||||
# --enable-libvorbis # xxxx
|
||||
--enable-cuda --enable-cuda-sdk --enable-cuda-nvcc --enable-nvenc --enable-cuvid --enable-libnpp \
|
||||
--extra-cflags=-I/usr/local/cuda/include --extra-ldflags=-L/usr/local/cuda/lib64 && \
|
||||
make -j4 && \
|
||||
cp ffmpeg /tmp/ffmpeg-pascal
|
||||
|
||||
# now collect up all the .so files we'll need for the runtime, into new lib/ subdir
|
||||
RUN BIN=ffmpeg && mkdir lib && ( \
|
||||
ldd ${BIN?} |awk '{if(substr($3,0,1)=="/") print $3}'; \
|
||||
) |xargs -d '\n' -I{} cp --copy-contents {} ./lib
|
||||
|
||||
|
||||
|
||||
# switch to the smaller "runtime" baseline.
|
||||
# now we just keep the executable(s) and .so files they need and chuck everything else above.
|
||||
FROM nvidia/cudagl:$CUDA_RUNTIME
|
||||
COPY --from=builder /tmp/ffmpeg-pascal /ffmpeg-pascal
|
||||
COPY --from=builder /tmp/ffmpeg-turing /ffmpeg
|
||||
COPY --from=builder /tmp/ffmpeg/lib/ /fflib
|
||||
|
||||
# @see cuda-runtime.sh for where this small image of three cuda runtime .so files came from
|
||||
# COPY --from=registry.archive.org/www/ffmpeg-gpu/cuda /cuda/*.so.1 /fflib
|
||||
|
||||
# /cuda we volume mount from the container's host /usr/lib/x86_64-linux-gnu/ so we runtime load:
|
||||
# libcuda.so.1
|
||||
# libnvcuvid.so.1
|
||||
# libnvidia-encode.so.1
|
||||
|
||||
ENV LD_LIBRARY_PATH=/fflib:/cuda
|
||||
ENTRYPOINT ["/ffmpeg"]
|
||||
CMD ["--help"]
|
48
README.md
Normal file
48
README.md
Normal file
@ -0,0 +1,48 @@
|
||||
# docker-gpu-ffmpeg
|
||||
|
||||
Use `ffmpeg` with `docker` and `nvidia` powers to transcode in Debian 11 Bullseye, based on [this nice docker project](https://git.archive.org/www/ffmpeg-gpu)
|
||||
|
||||
(__)
|
||||
(oo)
|
||||
/------\/
|
||||
/ | ||
|
||||
* /\---/\
|
||||
~~ ~~
|
||||
..."Have you mooed today?"...
|
||||
|
||||
## Requisites
|
||||
|
||||
### This project needs docker and docker-compose working with [nvidia runtime](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html)
|
||||
|
||||
## Build
|
||||
|
||||
$ git clone https://git.manalejandro.com/ale/docker-ffmpeg-gpu
|
||||
$ cd docker-ffmpeg-gpu && docker-compose build --force-rm
|
||||
|
||||
## Usage
|
||||
|
||||
### You can use "/ffmpeg" or "/ffmpeg-pascal" for architecture version
|
||||
|
||||
$ docker-compose up -d
|
||||
$ docker-compose run --rm --entrypoint /ffmpeg nvidia-ffmpeg -hwaccels -v 0
|
||||
|
||||
Hardware acceleration methods:
|
||||
vdpau
|
||||
cuda
|
||||
vaapi
|
||||
|
||||
## Sample decode using CUDA:
|
||||
|
||||
$ docker-compose run --rm --entrypoint /ffmpeg nvidia-ffmpeg -hwaccel cuda -i /folder/input /folder/output
|
||||
|
||||
## Full hardware transcode with NVDEC and NVENC:
|
||||
|
||||
$ docker-compose run --rm --entrypoint /ffmpeg nvidia-ffmpeg -hwaccel cuda -hwaccel_output_format nvdec -i /folder/input -c:v h264_nvenc /folder/output
|
||||
|
||||
## Shutdown
|
||||
|
||||
$ docker-compose down
|
||||
|
||||
## License
|
||||
|
||||
MIT
|
24
docker-compose.yml
Normal file
24
docker-compose.yml
Normal file
@ -0,0 +1,24 @@
|
||||
version: '2'
|
||||
|
||||
services:
|
||||
nvidia-ffmpeg:
|
||||
build: ./
|
||||
image: nvidia-ffmpeg
|
||||
container_name: nvidia-ffmpeg
|
||||
restart: "no"
|
||||
entrypoint:
|
||||
- /bin/sleep
|
||||
- infinity
|
||||
volumes:
|
||||
- /usr/lib/x86_64-linux-gnu/nvidia/current:/cuda:ro
|
||||
- $PWD/folder:/folder
|
||||
environment:
|
||||
- NVIDIA_VISIBLE_DEVICES=all
|
||||
devices:
|
||||
- /dev/nvidia0
|
||||
- /dev/nvidiactl
|
||||
- /dev/nvidia-uvm
|
||||
- /dev/nvidia-uvm-tools
|
||||
cap_add:
|
||||
- IPC_LOCK
|
||||
network_mode: host
|
Loading…
Reference in New Issue
Block a user