131 lines
4.0 KiB
Python
Executable File
131 lines
4.0 KiB
Python
Executable File
'''
|
|
Thomas Matlak Avi Vajpeyi, Avery Rapson
|
|
CS 310 Final Project
|
|
|
|
Takes example midi file and prints if its happy or sad
|
|
|
|
Usage:
|
|
python [/path/to/midi/file.mid]
|
|
'''
|
|
|
|
import tensorflow as tf
|
|
import json
|
|
from mido import MidiFile
|
|
import numpy as np
|
|
import tempfile
|
|
|
|
|
|
midiFile = "testMidi.mid"
|
|
saveFile = "savedModels/musicModel"
|
|
|
|
pianoSize = 128
|
|
|
|
|
|
n_nodes_hl1 = 1500
|
|
n_nodes_hl2 = 1500
|
|
n_nodes_hl3 = 1500
|
|
|
|
n_classes = 2
|
|
hm_data = 2000000
|
|
|
|
batch_size = 32
|
|
hm_epochs = 10
|
|
|
|
x = tf.placeholder('float')
|
|
y = tf.placeholder('float')
|
|
|
|
|
|
current_epoch = tf.Variable(1)
|
|
|
|
hidden_1_layer = {'f_fum':n_nodes_hl1,
|
|
'weight':tf.Variable(tf.random_normal([pianoSize, n_nodes_hl1])),
|
|
'bias':tf.Variable(tf.random_normal([n_nodes_hl1]))}
|
|
|
|
hidden_2_layer = {'f_fum':n_nodes_hl2,
|
|
'weight':tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
|
|
'bias':tf.Variable(tf.random_normal([n_nodes_hl2]))}
|
|
|
|
hidden_3_layer = {'f_fum':n_nodes_hl3,
|
|
'weight':tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
|
|
'bias':tf.Variable(tf.random_normal([n_nodes_hl3]))}
|
|
|
|
output_layer = {'f_fum':None,
|
|
'weight':tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])),
|
|
'bias':tf.Variable(tf.random_normal([n_classes])),}
|
|
|
|
|
|
|
|
def neural_network_model(data):
|
|
####INPUT LAYER (HIDDEN LAYER 1)
|
|
l1 = tf.add(tf.matmul(data,hidden_1_layer['weight']), hidden_1_layer['bias'])
|
|
l1 = tf.nn.relu(l1)
|
|
####HIDDEN LAYER 2
|
|
l2 = tf.add(tf.matmul(l1,hidden_2_layer['weight']), hidden_2_layer['bias'])
|
|
l2 = tf.nn.relu(l2)
|
|
####HIDDEN LAYER 3
|
|
l3 = tf.add(tf.matmul(l2,hidden_3_layer['weight']), hidden_3_layer['bias'])
|
|
l3 = tf.nn.relu(l3)
|
|
####OUTPUT LAYER
|
|
output = tf.matmul(l3,output_layer['weight']) + output_layer['bias']
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#
|
|
def predictmood(input_midi_file):
|
|
output = tempfile.NamedTemporaryFile()
|
|
prediction = neural_network_model(x)
|
|
# with open('musicModel.pickle','rb') as f:
|
|
# lexicon = pickle.load(f)
|
|
with tf.Session() as sess:
|
|
sess.run(tf.global_variables_initializer())
|
|
saver = tf.train.import_meta_graph('savedModels/musicModel.meta')
|
|
saver.restore(sess, 'savedModels/musicModel')
|
|
#### CONVERT THE MIDI TO NOTES AND FEATURES (without [0,1])
|
|
#### need it in the [0 112 1 1 0 0 0 ....] format
|
|
mid = MidiFile(input_midi_file)
|
|
notes = []
|
|
time = float(0)
|
|
prev = float(0)
|
|
for msg in mid:
|
|
if time >= 10:
|
|
break
|
|
### this time is in seconds, not ticks
|
|
time += msg.time
|
|
if not msg.is_meta:
|
|
### only interested in piano channel
|
|
if msg.channel == 0:
|
|
if msg.type == 'note_on':
|
|
# note in vector form to train on
|
|
note = msg.bytes()
|
|
# only interested in the note #and velocity. note message is in the form of [type, note, velocity]
|
|
note = note[1] #:3]
|
|
# note.append(time - prev)
|
|
prev = time
|
|
notes.append(note)
|
|
noteCount = np.zeros(pianoSize)
|
|
for note in notes:
|
|
noteCount[note] += 1
|
|
noteCount = list(noteCount)
|
|
#features = np.array(list(features))
|
|
# pos: [1,0] , argmax: 0
|
|
# neg: [0,1] , argmax: 1
|
|
result = (sess.run(tf.argmax(prediction.eval(feed_dict={x:[noteCount]}),1)))
|
|
if result[0] == 0:
|
|
output.write("Happy")
|
|
elif result[0] == 1:
|
|
output.write("Sad")
|
|
# with open('mood.txt', 'w') as outfile:
|
|
# mood_dict = dict()
|
|
# if result[0] == 0:
|
|
# mood_dict = {'Mood': "Happy"}
|
|
# elif result[0] == 1:
|
|
# mood_dict = {'Mood': "Sad"}
|
|
# json.dump(mood_dict, outfile)
|
|
output.seek(0) #resets the pointer to the data of the file to the start
|
|
return output
|
|
|