107 lines
3.8 KiB
Python
107 lines
3.8 KiB
Python
# Copyright 2016 Google Inc. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Create a dataset of SequenceExamples from NoteSequence protos.
|
|
|
|
This script will extract melodies from NoteSequence protos and save them to
|
|
TensorFlow's SequenceExample protos for input to the melody RNN models.
|
|
"""
|
|
|
|
import os
|
|
|
|
# internal imports
|
|
import tensorflow as tf
|
|
|
|
from magenta.music import melodies_lib
|
|
from magenta.pipelines import dag_pipeline
|
|
from magenta.pipelines import pipeline
|
|
from magenta.pipelines import pipelines_common
|
|
from magenta.protobuf import music_pb2
|
|
|
|
|
|
FLAGS = tf.app.flags.FLAGS
|
|
tf.app.flags.DEFINE_string('input', None,
|
|
'TFRecord to read NoteSequence protos from.')
|
|
tf.app.flags.DEFINE_string('output_dir', None,
|
|
'Directory to write training and eval TFRecord '
|
|
'files. The TFRecord files are populated with '
|
|
'SequenceExample protos.')
|
|
tf.app.flags.DEFINE_float('eval_ratio', 0.0,
|
|
'Fraction of input to set aside for eval set. '
|
|
'Partition is randomly selected.')
|
|
tf.app.flags.DEFINE_string('log', 'INFO',
|
|
'The threshold for what messages will be logged '
|
|
'DEBUG, INFO, WARN, ERROR, or FATAL.')
|
|
|
|
|
|
class EncoderPipeline(pipeline.Pipeline):
|
|
"""A Module that converts monophonic melodies to a model specific encoding."""
|
|
|
|
def __init__(self, melody_encoder_decoder):
|
|
"""Constructs a EncoderPipeline.
|
|
|
|
A melodies_lib.MelodyEncoderDecoder is needed to provide the
|
|
`encode` function.
|
|
|
|
Args:
|
|
melody_encoder_decoder: A melodies_lib.MelodyEncoderDecoder object.
|
|
"""
|
|
super(EncoderPipeline, self).__init__(
|
|
input_type=melodies_lib.MonophonicMelody,
|
|
output_type=tf.train.SequenceExample)
|
|
self.melody_encoder_decoder = melody_encoder_decoder
|
|
|
|
def transform(self, melody):
|
|
encoded = self.melody_encoder_decoder.squash_and_encode(melody)
|
|
return [encoded]
|
|
|
|
def get_stats(self):
|
|
return {}
|
|
|
|
|
|
def get_pipeline(melody_encoder_decoder):
|
|
"""Returns the Pipeline instance which creates the RNN dataset.
|
|
|
|
Args:
|
|
melody_encoder_decoder: A melodies_lib.MelodyEncoderDecoder object.
|
|
|
|
Returns:
|
|
A pipeline.Pipeline instance.
|
|
"""
|
|
quantizer = pipelines_common.Quantizer(steps_per_quarter=4)
|
|
melody_extractor = pipelines_common.MonophonicMelodyExtractor(
|
|
min_bars=7, min_unique_pitches=5,
|
|
gap_bars=1.0, ignore_polyphonic_notes=False)
|
|
encoder_pipeline = EncoderPipeline(melody_encoder_decoder)
|
|
partitioner = pipelines_common.RandomPartition(
|
|
tf.train.SequenceExample,
|
|
['eval_melodies', 'training_melodies'],
|
|
[FLAGS.eval_ratio])
|
|
|
|
dag = {quantizer: dag_pipeline.Input(music_pb2.NoteSequence),
|
|
melody_extractor: quantizer,
|
|
encoder_pipeline: melody_extractor,
|
|
partitioner: encoder_pipeline,
|
|
dag_pipeline.Output(): partitioner}
|
|
return dag_pipeline.DAGPipeline(dag)
|
|
|
|
|
|
def run_from_flags(pipeline_instance):
|
|
tf.logging.set_verbosity(FLAGS.log)
|
|
FLAGS.input = os.path.expanduser(FLAGS.input)
|
|
FLAGS.output_dir = os.path.expanduser(FLAGS.output_dir)
|
|
pipeline.run_pipeline_serial(
|
|
pipeline_instance,
|
|
pipeline.tf_record_iterator(FLAGS.input, pipeline_instance.input_type),
|
|
FLAGS.output_dir)
|