3fe2b59d90
Add the music model generation and usage scripts with documentation
159 lines
5.4 KiB
Python
159 lines
5.4 KiB
Python
import tensorflow as tf
|
|
import numpy as np
|
|
import pickle
|
|
import os
|
|
# from tensorflow.examples.tutorials.mnist import input_data
|
|
# mnist = input_data.read_data_sets("/tmp/data/", one_hot = True)
|
|
# from createMusicalFeaturesets import create_feature_sets_and_labels
|
|
train_x,train_y,test_x,test_y = pickle.load(open("notesData2.pickle", "rb"))
|
|
|
|
|
|
saveFile = "savedModels/musicModelpy27"
|
|
|
|
|
|
n_nodes_hl1 = 1000
|
|
n_nodes_hl2 = 1000
|
|
n_nodes_hl3 = 1000
|
|
|
|
n_classes = 2
|
|
batch_size = 10
|
|
hm_epochs = 9
|
|
|
|
input_data_size = len(train_x[0])# each train_x instance is one song, and so one lexicon of notes
|
|
print("DEBUG: input data size = "+str(input_data_size))
|
|
|
|
x = tf.placeholder('float')
|
|
y = tf.placeholder('float')
|
|
|
|
hidden_1_layer = {'f_fum':n_nodes_hl1,
|
|
'weight':tf.Variable(tf.random_normal([128, n_nodes_hl1])),
|
|
'bias':tf.Variable(tf.random_normal([n_nodes_hl1]))}
|
|
|
|
hidden_2_layer = {'f_fum':n_nodes_hl2,
|
|
'weight':tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
|
|
'bias':tf.Variable(tf.random_normal([n_nodes_hl2]))}
|
|
|
|
hidden_3_layer = {'f_fum':n_nodes_hl3,
|
|
'weight':tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
|
|
'bias':tf.Variable(tf.random_normal([n_nodes_hl3]))}
|
|
|
|
output_layer = {'f_fum':None,
|
|
'weight':tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])),
|
|
'bias':tf.Variable(tf.random_normal([n_classes])),}
|
|
|
|
|
|
|
|
# Nothing changes
|
|
def neural_network_model(data):
|
|
####INPUT LAYER (HIDDEN LAYER 1)
|
|
l1 = tf.add(tf.matmul(data,hidden_1_layer['weight']), hidden_1_layer['bias'])
|
|
l1 = tf.nn.relu(l1)
|
|
####HIDDEN LAYER 2
|
|
l2 = tf.add(tf.matmul(l1,hidden_2_layer['weight']), hidden_2_layer['bias'])
|
|
l2 = tf.nn.relu(l2)
|
|
####HIDDEN LAYER 3
|
|
l3 = tf.add(tf.matmul(l2,hidden_3_layer['weight']), hidden_3_layer['bias'])
|
|
l3 = tf.nn.relu(l3)
|
|
####OUTPUT LAYER
|
|
output = tf.matmul(l3,output_layer['weight']) + output_layer['bias']
|
|
|
|
return output
|
|
|
|
|
|
def train_neural_network(x):
|
|
prediction = neural_network_model(x)
|
|
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y) )
|
|
optimizer = tf.train.AdamOptimizer().minimize(cost)
|
|
with tf.Session() as sess:
|
|
sess.run(tf.global_variables_initializer())
|
|
# try:
|
|
# epoch = int(open(tf_log,'r').read().split('\n')[-2])+1
|
|
# print('STARTING EPOCH:',epoch)
|
|
# except:
|
|
# epoch = 1
|
|
batches_run = 0
|
|
epoch = 1
|
|
while epoch <= hm_epochs:
|
|
# if epoch != 1:
|
|
# #saver.restore(sess,'/'+saveFile)
|
|
# print("Should Restore Saved File")
|
|
epoch_loss = 1
|
|
i=0
|
|
while i < len(train_x):
|
|
start = i
|
|
end = i+batch_size
|
|
batch_x = np.array(train_x[start:end])
|
|
batch_y = np.array(train_y[start:end])
|
|
_, c = sess.run([optimizer, cost], feed_dict={x: batch_x, y: batch_y})
|
|
epoch_loss += c
|
|
i+=batch_size
|
|
batches_run +=1
|
|
print('Batch run:',batches_run,'/',batch_size,'| Epoch:',
|
|
epoch,'| Batch Loss:',c,)
|
|
saver.save(sess, saveFile)
|
|
print("Should Save session in "+ saveFile )
|
|
print('Epoch', epoch+1, 'completed out of',hm_epochs,'loss:', epoch_loss)
|
|
# with open(tf_log,'a') as f:
|
|
# f.write(str(epoch)+'\n')
|
|
epoch +=1
|
|
correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
|
|
accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
|
|
print('Trained',len(train_x),'samples.')
|
|
print('Tested',len(test_x),'samples.')
|
|
accPercent = accuracy.eval({x:test_x, y:test_y})*100
|
|
print('Accuracy: '+ str(accPercent)+ '%')
|
|
|
|
|
|
saver = tf.train.Saver()
|
|
# tf_log = 'tf.log' ## SAVES EPOCH NUMBER
|
|
train_neural_network(x)
|
|
|
|
|
|
def test_neural_network():
|
|
prediction = neural_network_model(x)
|
|
with tf.Session() as sess:
|
|
sess.run(tf.global_variables_initializer())
|
|
# for epoch in range(hm_epochs):
|
|
# try:
|
|
# y =2
|
|
# # saver.restore(sess,'/'+saveFile)
|
|
# print("Restoring "+ saveFile )
|
|
# except Exception as e:
|
|
# print(str(e))
|
|
# epoch_loss = 0
|
|
|
|
correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
|
|
accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
|
|
|
|
## WHEN WE SAVE TESTING DATA SEPARATLY
|
|
# feature_sets = []
|
|
# labels = []
|
|
# counter = 0
|
|
# with open('processed-test-set.csv', buffering=20000) as f:
|
|
# for line in f:
|
|
# try:
|
|
# features = list(eval(line.split('::')[0]))
|
|
# label = list(eval(line.split('::')[1]))
|
|
# feature_sets.append(features)
|
|
# labels.append(label)
|
|
# counter += 1
|
|
# except:
|
|
# pass
|
|
|
|
testx = np.array(test_x)
|
|
testy = np.array(test_y)
|
|
counter = len(test_x)
|
|
print(testx,testy)
|
|
print(test_x,test_y)
|
|
print('******RESULTS******')
|
|
print('Tested',counter,'samples.')
|
|
print('Accuracy:', accuracy.eval({x:testx, y:testy}) )
|
|
|
|
|
|
#test_neural_network()
|
|
|
|
|
|
print ("\n\n\nFINISHED\n\n\n")
|
|
# x =os.remove("tf.log")
|
|
# print("removed :" + str(x))
|