import tensorflow as tf import numpy as np import pickle import os # from tensorflow.examples.tutorials.mnist import input_data # mnist = input_data.read_data_sets("/tmp/data/", one_hot = True) # from createMusicalFeaturesets import create_feature_sets_and_labels train_x,train_y,test_x,test_y = pickle.load(open("notesData2.pickle", "rb")) saveFile = "savedModels/musicModelpy27" n_nodes_hl1 = 1000 n_nodes_hl2 = 1000 n_nodes_hl3 = 1000 n_classes = 2 batch_size = 10 hm_epochs = 9 input_data_size = len(train_x[0])# each train_x instance is one song, and so one lexicon of notes print("DEBUG: input data size = "+str(input_data_size)) x = tf.placeholder('float') y = tf.placeholder('float') hidden_1_layer = {'f_fum':n_nodes_hl1, 'weight':tf.Variable(tf.random_normal([128, n_nodes_hl1])), 'bias':tf.Variable(tf.random_normal([n_nodes_hl1]))} hidden_2_layer = {'f_fum':n_nodes_hl2, 'weight':tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])), 'bias':tf.Variable(tf.random_normal([n_nodes_hl2]))} hidden_3_layer = {'f_fum':n_nodes_hl3, 'weight':tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])), 'bias':tf.Variable(tf.random_normal([n_nodes_hl3]))} output_layer = {'f_fum':None, 'weight':tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])), 'bias':tf.Variable(tf.random_normal([n_classes])),} # Nothing changes def neural_network_model(data): ####INPUT LAYER (HIDDEN LAYER 1) l1 = tf.add(tf.matmul(data,hidden_1_layer['weight']), hidden_1_layer['bias']) l1 = tf.nn.relu(l1) ####HIDDEN LAYER 2 l2 = tf.add(tf.matmul(l1,hidden_2_layer['weight']), hidden_2_layer['bias']) l2 = tf.nn.relu(l2) ####HIDDEN LAYER 3 l3 = tf.add(tf.matmul(l2,hidden_3_layer['weight']), hidden_3_layer['bias']) l3 = tf.nn.relu(l3) ####OUTPUT LAYER output = tf.matmul(l3,output_layer['weight']) + output_layer['bias'] return output def train_neural_network(x): prediction = neural_network_model(x) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y) ) optimizer = tf.train.AdamOptimizer().minimize(cost) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) # try: # epoch = int(open(tf_log,'r').read().split('\n')[-2])+1 # print('STARTING EPOCH:',epoch) # except: # epoch = 1 batches_run = 0 epoch = 1 while epoch <= hm_epochs: # if epoch != 1: # #saver.restore(sess,'/'+saveFile) # print("Should Restore Saved File") epoch_loss = 1 i=0 while i < len(train_x): start = i end = i+batch_size batch_x = np.array(train_x[start:end]) batch_y = np.array(train_y[start:end]) _, c = sess.run([optimizer, cost], feed_dict={x: batch_x, y: batch_y}) epoch_loss += c i+=batch_size batches_run +=1 print('Batch run:',batches_run,'/',batch_size,'| Epoch:', epoch,'| Batch Loss:',c,) saver.save(sess, saveFile) print("Should Save session in "+ saveFile ) print('Epoch', epoch+1, 'completed out of',hm_epochs,'loss:', epoch_loss) # with open(tf_log,'a') as f: # f.write(str(epoch)+'\n') epoch +=1 correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct, 'float')) print('Trained',len(train_x),'samples.') print('Tested',len(test_x),'samples.') accPercent = accuracy.eval({x:test_x, y:test_y})*100 print('Accuracy: '+ str(accPercent)+ '%') saver = tf.train.Saver() # tf_log = 'tf.log' ## SAVES EPOCH NUMBER train_neural_network(x) def test_neural_network(): prediction = neural_network_model(x) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) # for epoch in range(hm_epochs): # try: # y =2 # # saver.restore(sess,'/'+saveFile) # print("Restoring "+ saveFile ) # except Exception as e: # print(str(e)) # epoch_loss = 0 correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct, 'float')) ## WHEN WE SAVE TESTING DATA SEPARATLY # feature_sets = [] # labels = [] # counter = 0 # with open('processed-test-set.csv', buffering=20000) as f: # for line in f: # try: # features = list(eval(line.split('::')[0])) # label = list(eval(line.split('::')[1])) # feature_sets.append(features) # labels.append(label) # counter += 1 # except: # pass testx = np.array(test_x) testy = np.array(test_y) counter = len(test_x) print(testx,testy) print(test_x,test_y) print('******RESULTS******') print('Tested',counter,'samples.') print('Accuracy:', accuracy.eval({x:testx, y:testy}) ) #test_neural_network() print ("\n\n\nFINISHED\n\n\n") # x =os.remove("tf.log") # print("removed :" + str(x))