# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Provides function to build a melody RNN model's graph.""" # internal imports import tensorflow as tf from magenta.common import sequence_example_lib def build_graph(mode, hparams, encoder_decoder, sequence_example_file=None): """Builds the TensorFlow graph. Args: mode: 'train', 'eval', or 'generate'. Only mode related ops are added to the graph. hparams: A tf_lib.HParams object containing the hyperparameters to use. encoder_decoder: The MelodyEncoderDecoder being used by the model. sequence_example_file: A string path to a TFRecord file containing tf.train.SequenceExamples. Only needed for training and evaluation. Returns: A tf.Graph instance which contains the TF ops. Raises: ValueError: If mode is not 'train', 'eval', or 'generate', or if sequence_example_file does not match a file when mode is 'train' or 'eval'. """ if mode not in ('train', 'eval', 'generate'): raise ValueError('The mode parameter must be \'train\', \'eval\', ' 'or \'generate\'. The mode parameter was: %s' % mode) tf.logging.info('hparams = %s', hparams.values()) input_size = encoder_decoder.input_size num_classes = encoder_decoder.num_classes no_event_label = encoder_decoder.no_event_label with tf.Graph().as_default() as graph: inputs, labels, lengths, = None, None, None state_is_tuple = True if mode == 'train' or mode == 'eval': inputs, labels, lengths = sequence_example_lib.get_padded_batch( [sequence_example_file], hparams.batch_size, input_size) elif mode == 'generate': inputs = tf.placeholder(tf.float32, [hparams.batch_size, None, input_size]) # If state_is_tuple is True, the output RNN cell state will be a tuple # instead of a tensor. During training and evaluation this improves # performance. However, during generation, the RNN cell state is fed # back into the graph with a feed dict. Feed dicts require passed in # values to be tensors and not tuples, so state_is_tuple is set to False. state_is_tuple = False cells = [] for num_units in hparams.rnn_layer_sizes: cell = tf.nn.rnn_cell.BasicLSTMCell( num_units, state_is_tuple=state_is_tuple) cell = tf.nn.rnn_cell.DropoutWrapper( cell, output_keep_prob=hparams.dropout_keep_prob) cells.append(cell) cell = tf.nn.rnn_cell.MultiRNNCell(cells, state_is_tuple=state_is_tuple) if hparams.attn_length: cell = tf.contrib.rnn.AttentionCellWrapper( cell, hparams.attn_length, state_is_tuple=state_is_tuple) initial_state = cell.zero_state(hparams.batch_size, tf.float32) outputs, final_state = tf.nn.dynamic_rnn( cell, inputs, lengths, initial_state, parallel_iterations=1, swap_memory=True) outputs_flat = tf.reshape(outputs, [-1, hparams.rnn_layer_sizes[-1]]) logits_flat = tf.contrib.layers.linear(outputs_flat, num_classes) if mode == 'train' or mode == 'eval': if hparams.skip_first_n_losses: logits = tf.reshape(logits_flat, [hparams.batch_size, -1, num_classes]) logits = logits[:, hparams.skip_first_n_losses:, :] logits_flat = tf.reshape(logits, [-1, num_classes]) labels = labels[:, hparams.skip_first_n_losses:] labels_flat = tf.reshape(labels, [-1]) loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits( logits_flat, labels_flat)) perplexity = tf.exp(loss) correct_predictions = tf.to_float( tf.nn.in_top_k(logits_flat, labels_flat, 1)) accuracy = tf.reduce_mean(correct_predictions) * 100 event_positions = tf.to_float(tf.not_equal(labels_flat, no_event_label)) event_accuracy = tf.truediv( tf.reduce_sum(tf.mul(correct_predictions, event_positions)), tf.reduce_sum(event_positions)) * 100 no_event_positions = tf.to_float(tf.equal(labels_flat, no_event_label)) no_event_accuracy = tf.truediv( tf.reduce_sum(tf.mul(correct_predictions, no_event_positions)), tf.reduce_sum(no_event_positions)) * 100 global_step = tf.Variable(0, trainable=False, name='global_step') tf.add_to_collection('loss', loss) tf.add_to_collection('perplexity', perplexity) tf.add_to_collection('accuracy', accuracy) tf.add_to_collection('global_step', global_step) summaries = [ tf.scalar_summary('loss', loss), tf.scalar_summary('perplexity', perplexity), tf.scalar_summary('accuracy', accuracy), tf.scalar_summary('event_accuracy', event_accuracy), tf.scalar_summary('no_event_accuracy', no_event_accuracy), ] if mode == 'train': learning_rate = tf.train.exponential_decay( hparams.initial_learning_rate, global_step, hparams.decay_steps, hparams.decay_rate, staircase=True, name='learning_rate') opt = tf.train.AdamOptimizer(learning_rate) params = tf.trainable_variables() gradients = tf.gradients(loss, params) clipped_gradients, _ = tf.clip_by_global_norm(gradients, hparams.clip_norm) train_op = opt.apply_gradients(zip(clipped_gradients, params), global_step) tf.add_to_collection('learning_rate', learning_rate) tf.add_to_collection('train_op', train_op) summaries.append(tf.scalar_summary('learning_rate', learning_rate)) if mode == 'eval': summary_op = tf.merge_summary(summaries) tf.add_to_collection('summary_op', summary_op) elif mode == 'generate': if hparams.temperature != 1.0: logits_flat /= hparams.temperature softmax_flat = tf.nn.softmax(logits_flat) softmax = tf.reshape(softmax_flat, [hparams.batch_size, -1, num_classes]) tf.add_to_collection('inputs', inputs) tf.add_to_collection('initial_state', initial_state) tf.add_to_collection('final_state', final_state) tf.add_to_collection('softmax', softmax) return graph