260 lines
9.5 KiB
Python
260 lines
9.5 KiB
Python
|
# Copyright 2016 Google Inc. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""Generate melodies from a trained checkpoint of a melody RNN model.
|
||
|
|
||
|
Uses flags to define operation.
|
||
|
"""
|
||
|
|
||
|
import ast
|
||
|
import os
|
||
|
import time
|
||
|
|
||
|
# internal imports
|
||
|
|
||
|
from six.moves import range # pylint: disable=redefined-builtin
|
||
|
import tensorflow as tf
|
||
|
|
||
|
from magenta.music import constants
|
||
|
from magenta.music import melodies_lib
|
||
|
from magenta.music import midi_io
|
||
|
from magenta.music import sequence_generator
|
||
|
from magenta.music import sequence_generator_bundle
|
||
|
from magenta.protobuf import generator_pb2
|
||
|
|
||
|
FLAGS = tf.app.flags.FLAGS
|
||
|
tf.app.flags.DEFINE_string(
|
||
|
'run_dir', None,
|
||
|
'Path to the directory where the latest checkpoint will be loaded from.')
|
||
|
tf.app.flags.DEFINE_string(
|
||
|
'checkpoint_file', None,
|
||
|
'Path to the checkpoint file. run_dir will take priority over this flag.')
|
||
|
tf.app.flags.DEFINE_string(
|
||
|
'bundle_file', None,
|
||
|
'Path to the bundle file. If specified, this will take priority over '
|
||
|
'run_dir and checkpoint_file, unless save_generator_bundle is True, in '
|
||
|
'which case both this flag and either run_dir or checkpoint_file are '
|
||
|
'required')
|
||
|
tf.app.flags.DEFINE_boolean(
|
||
|
'save_generator_bundle', False,
|
||
|
'If true, instead of generating a sequence, will save this generator as a '
|
||
|
'bundle file in the location specified by the bundle_file flag')
|
||
|
tf.app.flags.DEFINE_string(
|
||
|
'hparams', '{}',
|
||
|
'String representation of a Python dictionary containing hyperparameter '
|
||
|
'to value mapping. This mapping is merged with the default '
|
||
|
'hyperparameters.')
|
||
|
tf.app.flags.DEFINE_string(
|
||
|
'output_dir', '/tmp/melody_rnn/generated',
|
||
|
'The directory where MIDI files will be saved to.')
|
||
|
tf.app.flags.DEFINE_integer(
|
||
|
'num_outputs', 10,
|
||
|
'The number of melodies to generate. One MIDI file will be created for '
|
||
|
'each.')
|
||
|
tf.app.flags.DEFINE_integer(
|
||
|
'num_steps', 128,
|
||
|
'The total number of steps the generated melodies should be, priming '
|
||
|
'melody length + generated steps. Each step is a 16th of a bar.')
|
||
|
tf.app.flags.DEFINE_string(
|
||
|
'primer_melody', '',
|
||
|
'A string representation of a Python list of melodies_lib.MonophonicMelody '
|
||
|
'event values. For example: "[60, -2, 60, -2, 67, -2, 67, -2]". If '
|
||
|
'specified, this melody will be used as the priming melody. If a priming '
|
||
|
'melody is not specified, melodies will be generated from scratch.')
|
||
|
tf.app.flags.DEFINE_string(
|
||
|
'primer_midi', '',
|
||
|
'The path to a MIDI file containing a melody that will be used as a '
|
||
|
'priming melody. If a primer melody is not specified, melodies will be '
|
||
|
'generated from scratch.')
|
||
|
tf.app.flags.DEFINE_float(
|
||
|
'qpm', None,
|
||
|
'The quarters per minute to play generated output at. If a primer MIDI is '
|
||
|
'given, the qpm from that will override this flag. If qpm is None, qpm '
|
||
|
'will default to 120.')
|
||
|
tf.app.flags.DEFINE_float(
|
||
|
'temperature', 1.0,
|
||
|
'The randomness of the generated melodies. 1.0 uses the unaltered softmax '
|
||
|
'probabilities, greater than 1.0 makes melodies more random, less than '
|
||
|
'1.0 makes melodies less random.')
|
||
|
tf.app.flags.DEFINE_integer(
|
||
|
'steps_per_quarter', 4, 'What precision to use when quantizing the melody.')
|
||
|
tf.app.flags.DEFINE_string(
|
||
|
'log', 'INFO',
|
||
|
'The threshold for what messages will be logged DEBUG, INFO, WARN, ERROR, '
|
||
|
'or FATAL.')
|
||
|
|
||
|
|
||
|
def get_hparams():
|
||
|
"""Get the hparams dictionary to be used by the model."""
|
||
|
hparams = ast.literal_eval(FLAGS.hparams if FLAGS.hparams else '{}')
|
||
|
hparams['temperature'] = FLAGS.temperature
|
||
|
return hparams
|
||
|
|
||
|
|
||
|
def get_checkpoint():
|
||
|
"""Get the training dir or checkpoint path to be used by the model."""
|
||
|
if ((FLAGS.run_dir or FLAGS.checkpoint_file) and
|
||
|
FLAGS.bundle_file and not should_save_generator_bundle()):
|
||
|
raise sequence_generator.SequenceGeneratorException(
|
||
|
'Cannot specify both bundle_file and run_dir or checkpoint_file')
|
||
|
if FLAGS.run_dir:
|
||
|
train_dir = os.path.join(os.path.expanduser(FLAGS.run_dir), 'train')
|
||
|
return train_dir
|
||
|
elif FLAGS.checkpoint_file:
|
||
|
return os.path.expanduser(FLAGS.checkpoint_file)
|
||
|
else:
|
||
|
return None
|
||
|
|
||
|
|
||
|
def get_bundle_file():
|
||
|
"""Get the path to the bundle file with both a checkpoint and metagraph."""
|
||
|
if FLAGS.bundle_file is None:
|
||
|
return None
|
||
|
else:
|
||
|
return os.path.expanduser(FLAGS.bundle_file)
|
||
|
|
||
|
|
||
|
def get_bundle():
|
||
|
"""Returns a generator_pb2.GeneratorBundle object based read from bundle_file.
|
||
|
|
||
|
Returns:
|
||
|
Either a generator_pb2.GeneratorBundle or None if the bundle_file flag is
|
||
|
not set or the save_generator_bundle flag is set.
|
||
|
"""
|
||
|
if should_save_generator_bundle():
|
||
|
return None
|
||
|
bundle_file = get_bundle_file()
|
||
|
if bundle_file is None:
|
||
|
return None
|
||
|
return sequence_generator_bundle.read_bundle_file(bundle_file)
|
||
|
|
||
|
|
||
|
def should_save_generator_bundle():
|
||
|
"""Returns whether the generator should save a bundle.
|
||
|
|
||
|
If true, the generator should save its checkpoint and metagraph into a bundle
|
||
|
file, specified by get_bundle_file, instead of generating a sequence.
|
||
|
|
||
|
Returns:
|
||
|
Whether the generator should save a bundle.
|
||
|
"""
|
||
|
return FLAGS.save_generator_bundle
|
||
|
|
||
|
|
||
|
def get_steps_per_quarter():
|
||
|
"""Get the number of steps per quarter note."""
|
||
|
return FLAGS.steps_per_quarter
|
||
|
|
||
|
|
||
|
def _steps_to_seconds(steps, qpm):
|
||
|
"""Converts steps to seconds.
|
||
|
|
||
|
Uses the current flag value for steps_per_quarter.
|
||
|
|
||
|
Args:
|
||
|
steps: number of steps.
|
||
|
qpm: current qpm.
|
||
|
|
||
|
Returns:
|
||
|
Number of seconds the steps represent.
|
||
|
"""
|
||
|
return steps * 60.0 / qpm / get_steps_per_quarter()
|
||
|
|
||
|
|
||
|
def setup_logs():
|
||
|
"""Sets log level to the one specified in the flags."""
|
||
|
tf.logging.set_verbosity(FLAGS.log)
|
||
|
|
||
|
|
||
|
def run_with_flags(melody_rnn_sequence_generator):
|
||
|
"""Generates melodies and saves them as MIDI files.
|
||
|
|
||
|
Uses the options specified by the flags defined in this module. Intended to be
|
||
|
called from the main function of one of the melody generator modules.
|
||
|
|
||
|
Args:
|
||
|
melody_rnn_sequence_generator: A MelodyRnnSequenceGenerator object specific
|
||
|
to your model.
|
||
|
"""
|
||
|
if not FLAGS.output_dir:
|
||
|
tf.logging.fatal('--output_dir required')
|
||
|
return
|
||
|
|
||
|
FLAGS.output_dir = os.path.expanduser(FLAGS.output_dir)
|
||
|
if FLAGS.primer_midi:
|
||
|
FLAGS.primer_midi = os.path.expanduser(FLAGS.primer_midi)
|
||
|
|
||
|
if not os.path.exists(FLAGS.output_dir):
|
||
|
os.makedirs(FLAGS.output_dir)
|
||
|
|
||
|
primer_sequence = None
|
||
|
qpm = FLAGS.qpm if FLAGS.qpm else constants.DEFAULT_QUARTERS_PER_MINUTE
|
||
|
if FLAGS.primer_melody:
|
||
|
primer_melody = melodies_lib.MonophonicMelody()
|
||
|
primer_melody.from_event_list(ast.literal_eval(FLAGS.primer_melody))
|
||
|
primer_sequence = primer_melody.to_sequence(qpm=qpm)
|
||
|
elif FLAGS.primer_midi:
|
||
|
primer_sequence = midi_io.midi_file_to_sequence_proto(FLAGS.primer_midi)
|
||
|
if primer_sequence.tempos and primer_sequence.tempos[0].qpm:
|
||
|
qpm = primer_sequence.tempos[0].qpm
|
||
|
|
||
|
# Derive the total number of seconds to generate based on the QPM of the
|
||
|
# priming sequence and the num_steps flag.
|
||
|
total_seconds = _steps_to_seconds(FLAGS.num_steps, qpm)
|
||
|
|
||
|
# Specify start/stop time for generation based on starting generation at the
|
||
|
# end of the priming sequence and continuing until the sequence is num_steps
|
||
|
# long.
|
||
|
generate_request = generator_pb2.GenerateSequenceRequest()
|
||
|
if primer_sequence:
|
||
|
generate_request.input_sequence.CopyFrom(primer_sequence)
|
||
|
generate_section = (
|
||
|
generate_request.generator_options.generate_sections.add())
|
||
|
# Set the start time to begin on the next step after the last note ends.
|
||
|
notes_by_end_time = sorted(primer_sequence.notes, key=lambda n: n.end_time)
|
||
|
last_end_time = notes_by_end_time[-1].end_time if notes_by_end_time else 0
|
||
|
generate_section.start_time_seconds = last_end_time + _steps_to_seconds(
|
||
|
1, qpm)
|
||
|
generate_section.end_time_seconds = total_seconds
|
||
|
|
||
|
if generate_section.start_time_seconds >= generate_section.end_time_seconds:
|
||
|
tf.logging.fatal(
|
||
|
'Priming sequence is longer than the total number of steps '
|
||
|
'requested: Priming sequence length: %s, Generation length '
|
||
|
'requested: %s',
|
||
|
generate_section.start_time_seconds, total_seconds)
|
||
|
return
|
||
|
else:
|
||
|
generate_section = (
|
||
|
generate_request.generator_options.generate_sections.add())
|
||
|
generate_section.start_time_seconds = 0
|
||
|
generate_section.end_time_seconds = total_seconds
|
||
|
generate_request.input_sequence.tempos.add().qpm = qpm
|
||
|
tf.logging.debug('generate_request: %s', generate_request)
|
||
|
|
||
|
# Make the generate request num_outputs times and save the output as midi
|
||
|
# files.
|
||
|
date_and_time = time.strftime('%Y-%m-%d_%H%M%S')
|
||
|
digits = len(str(FLAGS.num_outputs))
|
||
|
for i in range(FLAGS.num_outputs):
|
||
|
generate_response = melody_rnn_sequence_generator.generate(
|
||
|
generate_request)
|
||
|
|
||
|
midi_filename = '%s_%s.mid' % (date_and_time, str(i + 1).zfill(digits))
|
||
|
midi_path = os.path.join(FLAGS.output_dir, midi_filename)
|
||
|
midi_io.sequence_proto_to_midi_file(
|
||
|
generate_response.generated_sequence, midi_path)
|
||
|
|
||
|
tf.logging.info('Wrote %d MIDI files to %s',
|
||
|
FLAGS.num_outputs, FLAGS.output_dir)
|