# Quick Start Guide - HDH Deployment Example Welcome to the HDH deployment example! This guide will get you up and running quickly. **Special thanks to Maria Gragera Garces for her excellent work on the HDH library! 🎉** ## 🚀 Quick Setup (5 minutes) ### Prerequisites - Python 3.10 or higher ✓ - Git ✓ - 4GB+ RAM recommended ### 1. Install Dependencies ```bash cd examples pip install -r requirements.txt pip install -e ../HDH ``` ### 2. Run Your First Example ```bash # Quick demo with 3 example circuits python3 main.py # Interactive CLI (recommended) python3 cli.py # Comprehensive demo python3 main.py --demo-mode ``` ### 3. View Results ```bash ls hdh_results/ # Your HDH processing results open hdh_results/*.png # View visualizations ``` ## 🎯 What You'll Get After running the examples, you'll have: - **HDH Visualizations**: PNG files showing quantum circuit hypergraph representations - **Processing Results**: JSON files with detailed analysis metrics - **Performance Data**: Timing and memory usage statistics - **Logs**: Detailed execution logs for debugging ## 📊 Example Outputs | File | Description | |------|-------------| | `Bell_State_hdh.png` | Bell state HDH visualization | | `deployment_results.json` | Complete processing results | | `hdh_deployment.log` | Detailed execution log | ## 🎮 Interactive Mode For the best experience, use the interactive CLI: ```bash python3 cli.py ``` This provides: - Guided workflows - Circuit selection menus - Real-time progress indicators - Beautiful console output - Help and documentation ## 🏃‍♂️ Quick Commands ```bash # Process specific circuit types python3 cli.py # Then select "1" -> "1" -> "bell_state" # Run performance benchmarks python3 benchmark.py --suite algorithms --repetitions 1 # Generate QASM examples python3 circuit_examples.py # Use Make for automation make demo # Complete workflow make run # Just main example make benchmark # Performance tests ``` ## 🐳 Docker Quick Start ```bash # Build and run docker build -t hdh-deployment . docker run --rm -v $(pwd)/hdh_results:/app/hdh_results hdh-deployment # Or use Docker Compose docker-compose up ``` ## 🔧 Troubleshooting **Import Error**: `No module named 'hdh'` ```bash pip install -e ../HDH ``` **Memory Issues**: Reduce circuit sizes ```bash python3 main.py --max-qubits 4 ``` **Visualization Issues**: Set matplotlib backend ```bash export MPLBACKEND=Agg ``` ## 📚 Next Steps 1. **Explore the CLI**: Run `python3 cli.py` for guided experience 2. **Try Benchmarks**: Run `python3 benchmark.py --help` 3. **Read the README**: Check `README.md` for complete documentation 4. **Customize**: Edit `config.yaml` for your preferences ## 🎉 Success Indicators You'll know it's working when you see: - ✅ "HDH Deployment Manager initialized" - ✅ "Successfully converted [circuit] to HDH" - ✅ "Visualization saved: [filename]" - ✅ "Thank you Maria for the excellent HDH library! 🎉" ## 🆘 Need Help? - Run `python3 cli.py` and select "Help & Documentation" - Check the full `README.md` - Look at example outputs in generated files - Use `make help` for automation options --- **Ready to explore quantum circuit analysis with HDH? Let's go!** 🚀 *Special thanks to Maria Gragera Garces for making this possible!* ⭐