# HDH Deployment Example 🚀 A comprehensive deployment example showcasing the power of the **HDH (Hybrid Dependency Hypergraph)** library for quantum computation analysis and visualization. **Special thanks to [Maria Gragera Garces](https://github.com/grageragarces) for her excellent work on the HDH library! 🎉** ## Overview This deployment example demonstrates real-world usage of the HDH library, providing: - **Comprehensive circuit processing** - Convert quantum circuits to HDH format - **Performance benchmarking** - Analyze HDH performance across different circuit types - **Visualization capabilities** - Generate HDH visualizations and analysis plots - **Scalability testing** - Test HDH with circuits of varying complexity - **Production-ready deployment** - Docker support, logging, error handling - **CLI tools** - Command-line interface for easy interaction ## Features ### ✨ Core Capabilities - **Multi-framework support**: Qiskit, Braket, Cirq, PennyLane circuit conversion - **QASM file processing**: Import and analyze OpenQASM 2.0 files - **Advanced analysis**: Circuit partitioning, dependency analysis, metrics computation - **Rich visualizations**: HDH graphs, performance plots, scalability analysis - **Benchmarking suite**: Comprehensive performance evaluation tools ### 🔧 Production Features - **Error handling**: Robust error handling and recovery - **Logging**: Comprehensive logging with configurable levels - **Configuration**: YAML-based configuration management - **Docker support**: Containerized deployment options - **CLI interface**: User-friendly command-line tools - **Performance monitoring**: Memory usage and execution time tracking ## Installation ### Prerequisites - Python 3.10 or higher - HDH library (from the parent HDH directory) - Dependencies listed in `requirements.txt` ### Quick Setup ```bash # Clone and navigate to the examples directory cd examples # Create virtual environment (recommended) python -m venv hdh-env source hdh-env/bin/activate # On Windows: hdh-env\Scripts\activate # Install dependencies pip install -r requirements.txt # Install HDH library in development mode pip install -e ../HDH # Verify installation python main.py --help ``` ### Development Setup ```bash # Install with development dependencies pip install -e ".[dev]" # Run tests pytest # Format code black . isort . ``` ## Usage ### 🚀 Quick Start Run the basic deployment example: ```bash python main.py ``` This will process several example quantum circuits and generate HDH visualizations. ### 📊 Comprehensive Demo Run the full demonstration suite: ```bash python main.py --demo-mode --output-dir results ``` ### 📈 Performance Benchmarking Run comprehensive performance benchmarks: ```bash python benchmark.py --suite all --repetitions 5 ``` Benchmark specific circuit types: ```bash # Test scalability python benchmark.py --suite scalability --max-qubits 8 # Test algorithms python benchmark.py --suite algorithms # Test random circuits python benchmark.py --suite random ``` ### 🔍 Process Specific Files Process a specific QASM file: ```bash python main.py --qasm-file path/to/circuit.qasm ``` ### 🎛️ Command Line Interface Use the interactive CLI: ```bash python cli.py ``` ## Examples ### Basic Circuit Processing ```python from main import HDHDeploymentManager from circuit_examples import HDHCircuitLibrary # Initialize deployment manager manager = HDHDeploymentManager(output_dir="my_results") # Create example circuit library = HDHCircuitLibrary() bell_circuit = library.bell_state() # Process circuit result = manager.process_circuit(bell_circuit, save_plots=True) print(f"Processed {result['circuit_name']}: {result['hdh_stats']['nodes']} nodes") ``` ### Benchmarking Suite ```python from benchmark import HDHBenchmarkSuite # Initialize benchmark suite benchmark = HDHBenchmarkSuite(repetitions=3) # Run comprehensive benchmarks report = benchmark.run_full_benchmark() print(f"Benchmarked {report['benchmark_summary']['total_circuits']} circuits") ``` ## Circuit Library The deployment includes a comprehensive quantum circuit library: ### Basic Quantum States - **Bell States**: All four Bell state variants - **GHZ States**: Multi-qubit entangled states - **W States**: Symmetric superposition states ### Quantum Algorithms - **Quantum Fourier Transform (QFT)**: Efficient Fourier transform implementation - **Grover's Algorithm**: Quantum search algorithm - **Deutsch-Jozsa Algorithm**: Quantum function evaluation - **Shor's Algorithm**: Period finding (simplified) ### Quantum Protocols - **Quantum Teleportation**: State transfer protocol - **Quantum Error Correction**: 3-qubit bit-flip code ### Variational Algorithms - **VQE (Variational Quantum Eigensolver)**: Quantum optimization - **QAOA (Quantum Approximate Optimization Algorithm)**: Combinatorial optimization ### Random Circuits - **Parameterized random circuits**: For benchmarking and testing ## Configuration Customize the deployment using `config.yaml`: ```yaml # Logging configuration logging: level: INFO file: "hdh_deployment.log" # Output settings output: directory: "hdh_results" save_plots: true plot_dpi: 300 # Circuit processing circuits: max_qubits: 10 default_partitions: 3 enable_visualization: true # Performance settings performance: timeout_seconds: 300 max_memory_gb: 8 ``` ## Docker Deployment ### Build and Run ```bash # Build Docker image docker build -t hdh-deployment . # Run deployment docker run -v $(pwd)/results:/app/results hdh-deployment # Run with custom configuration docker run -v $(pwd)/config.yaml:/app/config.yaml hdh-deployment ``` ### Docker Compose ```bash # Start complete deployment stack docker-compose up # Run benchmarks docker-compose run benchmark python benchmark.py --suite all ``` ## API Reference ### HDHDeploymentManager Main deployment management class: ```python manager = HDHDeploymentManager( output_dir="results", # Output directory log_level="INFO" # Logging level ) # Process quantum circuit result = manager.process_circuit(quantum_circuit) # Process QASM file result = manager.process_qasm_file("circuit.qasm") # Run comprehensive demo summary = manager.run_comprehensive_demo() ``` ### HDHBenchmarkSuite Performance benchmarking suite: ```python benchmark = HDHBenchmarkSuite( output_dir="benchmark_results", repetitions=3 ) # Run specific benchmarks results = benchmark.run_scalability_benchmark() results = benchmark.run_algorithm_benchmark() # Generate performance plots benchmark.generate_performance_plots(results) ``` ### HDHCircuitLibrary Quantum circuit examples library: ```python library = HDHCircuitLibrary() # Get individual circuits bell = library.bell_state() ghz = library.ghz_state(4) qft = library.qft_circuit(3) # Get all examples examples = library.get_all_examples() # Get benchmark suite benchmark_circuits = library.get_benchmark_suite() ``` ## Results and Output The deployment generates comprehensive results: ### Directory Structure ``` hdh_results/ ├── hdh_deployment.log # Detailed logging ├── deployment_results.json # Processing results ├── Bell_State_hdh.png # Circuit visualizations ├── GHZ-3_hdh.png ├── QFT-3_hdh.png └── ... benchmark_results/ ├── benchmark.log # Benchmark logging ├── benchmark_report.json # Detailed benchmark data ├── scaling_performance.png # Performance scaling plots ├── algorithm_comparison.png # Algorithm comparison ├── memory_analysis.png # Memory usage analysis └── performance_complexity.png # Complexity analysis ``` ### Performance Metrics The deployment tracks comprehensive performance metrics: - **Conversion time**: Time to convert circuits to HDH - **Memory usage**: Peak memory consumption - **HDH statistics**: Nodes, edges, timesteps - **Partitioning metrics**: Cut cost, parallelism analysis - **Scalability data**: Performance vs circuit size ## Contributing We welcome contributions! Here's how you can help: 1. **Report Issues**: Found a bug? Report it! 2. **Add Examples**: Contribute new quantum circuit examples 3. **Improve Performance**: Optimize benchmarking and analysis 4. **Documentation**: Help improve documentation 5. **Testing**: Add more comprehensive tests ### Development Guidelines ```bash # Run tests pytest tests/ # Format code black . isort . flake8 . # Type checking mypy . ``` ## Troubleshooting ### Common Issues **Import Error**: "No module named 'hdh'" ```bash # Ensure HDH is installed pip install -e ../HDH ``` **Memory Issues**: Large circuits consuming too much memory ```bash # Reduce circuit size or use configuration limits python main.py --max-qubits 6 ``` **Visualization Errors**: Matplotlib backend issues ```bash # Set backend explicitly export MPLBACKEND=Agg ``` ### Performance Tips 1. **Limit circuit size**: Start with smaller circuits 2. **Use configuration**: Customize limits in config.yaml 3. **Monitor memory**: Use the memory profiling features 4. **Batch processing**: Process circuits in batches for large datasets ## Acknowledgments This deployment example was created to showcase the capabilities of the HDH library. **Special recognition goes to [Maria Gragera Garces](https://github.com/grageragarces) for her outstanding work developing the HDH library. Her innovative approach to quantum computation analysis through hybrid dependency hypergraphs has made this comprehensive deployment example possible.** 🙏 ### References - **HDH Library**: [GitHub Repository](https://github.com/grageragarces/hdh) - **Documentation**: [HDH Documentation](https://grageragarces.github.io/HDH/) - **PyPI Package**: [hdh](https://pypi.org/project/hdh/) ## License This deployment example is provided under the MIT License, consistent with the HDH library. ## Support For questions and support: - **HDH Library Issues**: [GitHub Issues](https://github.com/grageragarces/hdh/issues) - **Deployment Example**: Create an issue in this repository - **General Questions**: Check the HDH documentation --- *Built with ❤️ for the quantum computing community* *Thank you Maria for making quantum computation analysis more accessible through HDH! 🌟*